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IAN C. BRIGGS®

Machine contouring must not introduce infor-
mation which is not present in the data. The one-
dimensional spline fit has well defined smooth-
ness properties. These are duplicated for two-
dimensional interpolation in this paper, by solv-
ing the corresponding differential equation.
Finite difference equations are deduced from a

GEOPHYSICS, VOL. 39, NO. 1 (FEBRUARY 1974), P. 3v-48, 3 FIGS., 3 TABLES

}  MACHINE CONTOURIN.G USING MINIMUM CURVATURE{

principle of minimum total curvature, and an
iterative method of solution is outlined. Observa-
tions do not have to lie on & regular grid. Gravity
and aeromagnetic surveys provide examples
which compare favorably with the work of drafts-
men.

INTRODUCTION

Contour maps are useful in the evaluation and
interpretation of geophysical data. With the
rapid increase in the rate of acquisition of data, a
computer is an attractive means of producing
contour maps. ¢

Although errors oceur in most geophysical
observations, contour maps are usually drawn so
that the imaginary surface on which the contours
lie passes exactly through the observations. The
problem of interpolation is then either: (a) to
define a continuous function of the two space
variables, which takes the values of the observa-
tions at the required, perhaps random, positions;
or (b) to define a set of values at the points of a
regular grid, so that a grid point value tends to
an observational value if the position of the ob-
servation tends to the grid point. A solution to
(a) gives a solution to (b), but a solution to (b)
may not give a solution to (a). The solution to (b)
Is the one most commonly used as an input to a
program which draws contour lines.

Methods for the production of contour maps
have been published by Crain & Bhattacharyya
(1967), Smith (1968), Cole (1968), Pelto et al
(1968), and Mclntyre et al (1968). These methods
are variations of either weighting or function fit-
ting or both, and give a solution to problem (a)
and, hence, (b). Crain (1970) has provided a
review of these methods.

This article describes a method for finding a
solution to problem (b) without first finding a
solution to problem (d4). The solution also hap-
pens to be the smoothest. This attribute gives
confidence in the use of the method and explains
the quality of the resulting contour maps.

The problem of interpolation in one dimension
has led to the piecewise polynomial fit, or spline
(Ablbergret al, 1967). A continuous function is
found for all values of the independent variable.
This method has been extended to two dimen-
sions (De Boor, 1962), and used by Bhattachryya
(1969) to give a solution to problem (a).

However, if the observation points in two

dimensions are randomly situated, the fitting of '

piecewise two-dimensional polynomials to poly-
gons seems difficult, although it is possible if the
set of polygons are topologically equivalent to a
rectangular grid (Hessing et al, 1972)..

The optimum properties of the spline fit can be
obtained in both one and two dimensions by
solving the differential equation equivalent to a
third-order spline. This is the equation which
describes the displacement of a thin sheet in one
or two dimensions under the influence of point
forces. The ‘boundary conditions’ are not only at
the ends or boundary, but within the region of
interest. The solution is forced to take up the
value of the observation at the point of observa-
tion, in one or two dimensions. The equation is
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solved numerically, and thus gives a solution to
problem (b).

The smoothness properties follow from the
method of deducing the difference equations, and
the quality of the resulting contour map is thus
determined. The solution of the set of difference
equations is a time-consuming process, but the
iteration times on the computer have been re-
duced and can be reduced still further.

THE METHOD
The diflerential equalion
The thin metallic strip or sheet is bent by forces
acting at points so that the displacement at these
points is equal to the observation to be satisfied.
Let # be the displacement, «z, ¥ the space vari-
ables, and let forces f, act at (z,, Yo)y =1, -

N, where the observations are wa, then (Love,
1926)

diu i
S i ImE= T,
dx! (1)
= 0 otherwise,
in one dimension and
du v . gy d*u

axt dx%9y? :3;:

(2)

=fa %= %n, 3=y,

= 0 otherwise,

in two dimensions. The units are dimensionless.
A condition on ‘the solution is that #(x,) =w, or
#(xn, yu)=w,. In one dimcnsion, u, du/dx, and
@*u/dx2, the curvature, are continuous across the
point where the force is acting, but d%/d2® is
discontinuous across such a point and the value
of the discontinuity is equal to the force acting
at that point (Love, 1926). A solution in one
dimension is given by a third-order polynomial

u =gy + 61X + a:x® + agxf,

for each segment between the points where the
forces are acting. The coefficients ag, - - -, a3 are
found by using the continuity conditions above.
This solution is a cubic spline.

In two dimensions the solution of equation (2)
is to be used in place of the two-dimensional,
third-order piecewise polynomial fit.

Briggs

Boundary conditions

The most suitable condition for the ends of the
strip or edge of the thin sheet is that of freedom.

or a strip, the region between the end and the
extreme observation will have a linear form, and
for a sheet, the area between the edge and the
observations will tend to a plane as the sheet
becomes larger.

For one and two dimensions, at the ends or

edge, the force is zero, and the bending moment °

about a tangential line is zero. For one dimension,
these conditions give

a'u 0 (3)
oxt

and
%u ;
— = 0, respectively. 44)
dx?

For two dimensions, they give

ad (a=u + aﬂu) i )
dxr\ox* ' ayt) = -

where the normal to the edge is in the z-direction,
and give (4) also. The condition that

u(x,) = w,,

or

%U(Zn, Ya) = Wa, (6)

is also a “boundary” condition.

Equation (1) with boundary conditions (3),
(4), and (6) or equation (2) with boundary condi-
tions (5), (4), and (6) are solved numerically.

Finile difference equations

Equation (2) can be derived from the principle
of minimum curvature. Difference equations can :
be formed from equation (2) using. Taylor’s
theorem (Young, 1962) or directly from the prin-
ciple of minimum curvature. The boundary equa-
tions are more easily deduced by the latter
means. Equations to be used when an observation
does not lie on a grid point are more easily de-
duced by the former.

Consider the total squared curvature

Elu) = f f (:—:+ Z;':)zdxdy. %)
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It must be shown that if a function u(x, y) makes
C an extremum, then it obeys equation (2), and
also that if a function u obeys equation (2) then
it minimizes C. Let u(x, ¥) be a function on a
region in R? with boundary B. Let u make C an
extremum. Let z(z, y) be a function of u(x, y)
and an arbitrary function g, with

g
g=0 and a—=00nB,

n

where d/dn denotes a derivative along the nor-
mal to B,

z(xl ‘,V) R ﬂ(:, y) + eg(_x, y):

where ¢ is a real number.
Then

aC(z)
de

=
’

ew(}

and this must hold for all functions g(z, ).
Writin_g V2 for

al

dx?

a2
oyt

C(z) = f (V?u)*dxdy

+ 2¢ ff V2uVigdxdy
+ e ff Vigdxdy,

= 2ff V2uVigdxdy., -
=0

Using Green's theorem, (Courant and Hilbert
1953) the right-hand side gives

2(ff‘gV’(V=u)dxdy -l-fBV’u:—idI
-—-fagb%(v’u)df).

The last two integrals vanish and leave

f f gV3(Vu)dzdy = 0.

and
aC(z)
de
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Since this must hold for all g, V*(V2x) =0. Con-
versely, if » obeys equation (2), and if £ is any
other function on R?, with z2=wu, and 2/9n=0du/on
on B, we can show that C(x) <C(z). Consider

C(z) — C(u? = ff [(V’;):’ — (Vu)?]dxdy.

The right-hand side gives

f f (V22 — Vu)tdzdy

-+ 2ff Viu(Viz — Viu)dxdy.

The last term gives upon the use of Green’s
theorem

2(f (2 — w)V¥(Vu)dxdy

d
+f Viu — (z — w)dl
B an

- fs (z— 1) -;’-3 (V’g)dﬁ).

The integrals are zero; C(x) is then always less
than or equal to C(z). '

The principle of minimurm curvature is used to
deduce the normal difference equations. The
total squared curvature (7) is constructed directly
in terms of elements of the set of grid point values

ul‘.J_" = “(xi! J’:‘).
zi= (i — 1k, y; = (j — 1)k,
s yily m yoee

i=1,-

e
where h is the grid spacing. The discrete total
squared curvature is

I J

C=2 2 (Ciy,

fm] jeal

-(8)

where C;; is the curvature at (z;, ¥,). Ci; is a
function of u;; and some neighboring grid
values; the exact set depends on the accuracy

with which the curvature is to be represented.

To minimize the sum C, the functions
aC

81&.‘.,‘

G

l:"'nfij 1:"',-‘(! (9)
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are set equal to zero (Stiefel, 1963). The resulting
eguations determine a set of relations between
neighboring grid-point values, one relation for
each grid point.

In one dimension the simplest approximation
to the curvature at z; is

(wigr + iy — 2u) /1?2,
and in two dimensions at (z,, ¥;), it is
Cig = (i1 + %imr + i

+ i 5o1 — dug )/ R

Along edges and rows one from the edge, and
near corners, different expressions for the curva-
ture are used. For example, at an-edge j=1,

Cij = (%ipr,; + winy,; — 2u;;) /R (11)

These special cases are also included in the total
for C. Away from the edges, (10) shows that a
grid point value %; ; occurs in the expressions for,

Cii» Cisrjy Cimrjy Cigpn and  Ciyy

(10)

Thus, only these need to be considered when
equation (10) is used. Using (8), (9), and (10) the
common difference equation for the biliarmonic
equation results:
Uiypa; + Wijyo + Mica;+ Ui s
+ 2tisr541 F Uicr 501 F %igr500 F %ig o)
— B(tiyr,; + wicr i+ iy + uiz)  (12)
+ 20u;,; = 0. '
For the edge j=1, the difference equation is
Bioz,; T Uit T+ Uigpr + Uiy 1+ %ig i
— 4(si,; + Ui a1+ %igr.5) (13)
+ 7“.‘_,‘ =f 0

A complete set is given in Appendix B.

The point boundary conditions (6) are used by
setting u; ;=w, wherever %, ; occurs in the set of
linear equations, and by removing those equa-
tions which correspond to these fixed grid points.

Qbservation not on a grid point

If an observation does not coincide with a grid
point another difference equation is required for
grid points which are the vertices of the grid
square in which the observation falls. The obser-
vation point becomes part of the grid.

The equation used is a special case of a general
method for using a random grid for the numerical
solution of differential equations. The gencral
method is used by letting one grid point, the
observation, be on an irregular grid; the remain-
ing neighbors are on the regular grid in the dif-
ference equation relating a grid-point value to its
neighbors.

Equation (2) is equivalent to

(6’ : az)(aw_l_aw) :
axr | ay/\axt ' ayr)

If
- 0%u g *u ( ) (14)
g=—4+— at(z;, %),
e ay? Yi
equation (14) gives the difference equation
(Young, 1962), =
Cirg Cim i+ Ciza +Ciga (15)
- 4C;;= 0.

If equation (10) is used in equation (15), equa-
tion (12) results. However, we need an expres-
sion for C;; which uses values of u at discrete
points not lying on a regular grid.

Let % be a continuous function on the real two-
dimensional space R? and let (xo, yo) be in R2. If
the set of points

lx0+fhyﬂ+nk}, k=l:"'s5

are also in R? then for sufficiently small &,
and if  has sufficiently many derivatives,

“kE“(IO+fh}’n+m)x k=1,"'35:
is approximated by
o au

+ i —
0

dx?

du

du
ug + fr—
dx dy

+ m
o

1]
0*u

dxdy

+ Eam

0 ay*
To find an expression for
P*u  Ju

+ R at (I ] '
ax* a9y o o)

both sides of equations (16) are multiplied by a
real number & and a sum is made over k, so that

pre—

5
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l 4 5 4 5
S E bery = uy Y by + Z bikx Cij= Z biwe — ui; D by + bewn, (21)
ral k1 k=1 k1
ral 8
he i Y b where {1} is
n- Yio
.ii- 1 3% ' Witdjm1y Wi jm1y Yicljy %iy, i,
its + 5 1_3—:: E biks (17) and w, is the nearby observation value.

E bkfk“?k

Equation (21) can be used in (15) to give a
linear equation relating a grid point to neighbor-

8::6 ing grid points and an observation. This is used in
place of equation (12).

1 8*u 2 ‘

2 73;; - 2 b Iieration mairix

If the by are chosen such that

2 bk =0, 2 b = 0,
> bdi =2,

The set of linear algebraic equations (12), (13),
and others are best solved iteratively (Young,
1962). Given an approx:mate set of u;;, a new
set is obtained by making u;; the subject of
equations (12) and (13) and others. For example,

2 bibime = 0, (18) (13) gives
2
: 2 bum = 2, uﬁl = [4(uis; + uf.,‘ﬂ + ﬂf+1.;')
. then —_ (u?_g',- + ‘lt::.;l.,‘ + ﬂ:,‘-;—'.’ (22)
*u  d'u
; W + et at (xo, yo) + tivies + W) /7,
x Y

is approximated by

b 5
> bute — o Y b (19)

where the index p indicates the pth iteration.
Starting values must be given, and one suitable
method is to use the value of the nearest observa-
tion or a weighted sum of neighboring observa-

k=1 k=1 tions.
The satiie Tteration matrices which give faster rates of
convergence than that defined by (22) are known
[El B B t k& (Young, 1962; Parter, 1959), but are not de-
or < R s h iy scribed here. The proof of the existence of a solu-
e 5 s % . tion to the linear equations is omitted (Stiefel,
s L b h (20)  1963).

Em Ema Eama Eaa Eens
2 2 2 - - 2
m 72 LE N4 N6

must be nonsingular, for the b; to exist. For the
present purpose, where one #; lies off the regular
grid, and the remaining four lie on the regular
grid, with

£:’? 2= 'hr 0! _k:

a suitable set is

(hr _h): (OI _"'h)r (—ki 0)’ (_hr h)) (Eh ‘?3)’ .

Smoolhness properlies

The measure of smoothness, C= ¥ (c;;)? is a
function of k and the precision of the approxima-
tion for C;;. Because the linear equations are
deduced from the principle of minimum C, for a
given k and for a given definition of curvature,
the resulting grid-point surface is smoother than,
or as smooth as, any other grid-point surface.
Two contour maps produced by diffierent means
but using the same data, can be compared for
smoothness by digitizing the map, if necessary,

and calculating the total curvature C. The map
with the lower value of C is usually the more
acceptable, and delineates trends more clearly.

with £,>0 and 7> 0. Thus, for an expression for
the curvature at (x;, ¥;), we can use

& TPay” T

f
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Nothing will be said here about the conver-
gence of the grid point values or of C, as the grid
spacing tends to zero. However, for a given grid
spacing, the method gives the smoothest possible
contour map, and it can be used with some confi-
dence as a representation of the given data,

Drawing lines

There are many different methods of drawing
the contours once the grid (Crain, 1970) surface
has been found. The method used in the examples
involves a four-point cubic interpolation between
grid points to find contour cuts, and then a cubic
spline to join the cuts. The observations art not
used. This is the weak link in the present scheme,
Improvements can be made by using the obser-
vations or by using two-dimensional cubic inter-
polation over a grid square. The overall success
of the application of minimum total curvature
Wwarrants the undertaking of further work in the
improvement of details,

EXAMPLES

For each map the time for one iteration for one
grid point was approximately 0.4 msec using a
CDC 3600 computer. Up to 260,000 grid points
have been used to contour 60,000 observations at
one time. To provide edge matching when an
entire survey cannot be contoured at once, data
beyond the area to be contoured are used.

The iterations were discontinued when all sig-
nificant relocation of contour lines had taken
place.

Test cases

Two simple test examples are: (1) a one-dimen-
sional set of data taken to lie on a straight line;

- and (2) a set of data points (at least four are

necessary) taken to lie on a plane. In case (1) the

Table 2. The smoothest set of grid valves fixed at (7, 3), (8, 5), (5, 5), (8, 8), (4, 8).

Table 1. The smoothest set of discrete :
values fixed at i=3, 5, 8. :

i L .’

-5.62
1.69
9.00

16.31

25.00

36.46

49.77 :

64.00

78.23 -

92.46

O WO U B W —

—

free grid points tend to values lving on the same
straight line, and in case (2) the free grid points
tend to values lying in the same plane.

Table 1 gives the values of a one-dimensional
set of grid points which minimize the total curva.
ture. Grid points at 1=3, 5 8 are fixed and the
imaginary forces required to bend the spline act
at these points. The difierence equations used are
given in Appendix A.

Table 2 gives the values of a two-dimensional
set of grid points fixed at (7, 3), (8, 5), (5, 5),
(8, 8), and (4, 8). This set of grid points minimizes
the sum of the point curvatures defined by equa-
tion (10).

Table 3 gives the values of a two-dimensional
set of grid points fixed at infinity and at r=.2,
¥=_.3 where the observation is (-2)*4(.3)2=.13.

S

1 2 3 4 5 6 7 ] 9 10
1 -99.34 -89.96 -80.30 =70.10 -59.19 =-47.48 =35.01 -21.83 -B.44 5.25
2 -B4.07 =-75.42 -66.30 -56.53 =-45.95 -34.46 -22,)2 ~9.12 4.35 18.14
3 -69.07 -61.31 -52.89 -43.67 ~33.48 -22,17 -9,.86 3.2) 16.80 30.84
4 ~-54.66 -47.83 -40.14 -31.56 -21.83 -10.64 1.74 15.00 28.79 43.14
5 =41.19 -35.18 -28.14 -20.19 =-11.00 0.13 12,61 26.05 40.14 54.87
6 -259.03 -23.59 -16.97 ~9.55 -0.68 10.25 22.80 36.46 50.85 65.94 L
7 -18.57 -13.42 -7.00 -0.14 B.40 19.37 32.15 46.16 60.85 76.25
B ~-9.89 ~5.04 0.86 7.61 16.00 27.31 40.50 55.00 70.01 BS.74
9 -2.59 2.03 7.55 14.29 22,95 34.23 47.63 62,51 78.20 94.48
10 4.00 8.15 13.01 18.37 28.03 39.44 53.34 69.00 B5.67 102.78




\
.............,.................................Q.O...Q

-

Machine Contouring

Table # The smoothest set of grid valves fixed at
infinity and x=.2, y=.3, with x=0, y=0 at (3, 3).

i 1 2 3 4 5
i .
1 g.00 5.00 4.00 5.00 8.00
2 - 5.00 2.00 1.00 2.00 5.00
3 4.00 1.00 0.00 1.00 4.00
4 5,00 2.00 1.00 2.00 5.00
5 g.00 5.00 4.00 5.00 8.00

The condition at infinity is simulated by setting
grid values at (z, y) to z*+3* beyond a limit, and
by not using the boundary difference equations.
This table shows the results of using equation (21)
for the case where an observation does not fall on
a grid point. The grid points used are (—1, 1),
(=1, 0), (0, —1), (1, —1), and the observation at
(.2, .3). The matrix (20) is

45
-1 =1 0 s s
1 o —1 -1 .3
1 1 0 1 .04
-1 0 0 —1 .06
1 0 1 1 .09
and the resulting coefficients by, k=1, « - -, 5are

68, .60, .73, .48, and 2.67.
These are used in equations (21) and (15) to
give a value for the grid point at x=0, y=0.
These and other higher-order surfaces test the
method in general and the difference equations
in particular. The illustrated examples use real

data.

Almost uniform data

Figure 1 is the resulting contour map for gravi-
metric data sampled in mgal on a nominal 11 km

Fic. 1. Gravity data contoured at 1-mgal intervals using a grid spacing of 1.85 km.
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Fic. 2. Aeromagnetic data contoured at 10-gamma intervals using a grid spacing of 0.5 km.

network. The grid spacing was 1.85 km and the
number of iterations was 90. The number of grid
points was 1500. The smoothness of the interpo-
lating grid surface is apparent. The shapes of
contours for data for this type generally agree
with those of draftsmen. Differences occur when
the interpolating grid surface lies outside the
range of a closed group of observations.

The deficiency in the line-drawing routine
shows itself when ther50-mgal contour does not
pass exactly through a 50-mgal observation.

Line dala

A more difbcult set of data to contour is one
whose density of sampling is not isotropic. The
data for the total intensity aeromagnetic maps of
Figure 2 and Figure 3 were taken at 0.8 km inter-
vals along flight-lines nominally 3.2 km apart and
at a height of 650 m above ground. The grid spac-
ing used in the contouring was 0.5 km and the
number of iterations was 60. The number of grid
points is 6000 in Figure 2 and 16,500 in Figure 3.

The general smoothness is satisfactory al-
though a relatively rough profile along a line has
an effect on the contours close to the flight-line,
and this may not be desirable. The interpolation
is not a product of one-dimensional splines. A sec-
tion across the flight-lines is not the result of a
one-dimensional spline. This may be a drawback’
in some cases, but enables trends not lying at
right-angles to the flight path to be displayed.

CONCLUSION
The principle of minimum total curvature pro-
vides a method of two-dimensional interpolation
which allows a computer to draw reasonable maps

of geophysical data. The results are not alivays as

a draftsman would have them, but are an ade-
quate substitute in most cases.
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Fic. 3. Aeromagnetic data contoured at 10-gamma intervals using a grid spacing of 0.5 km.

REFERENCES for the Laplace and biharmonic difference equations:
Ablberg, J. H,, Nilson, E. N., and Walsh, J. L, 1967, . Num. Math,, v. 1. p. 240355

. : et ;  Pelto, Chester R., Elkins, Thomas A., and Bovd, H. A.,
The theory of splines and their applications: New 196 , Automalic contouring of ir !

York, Academic Press, : ! regularly spaced
) s ST data: . 33, p. 42 ;
Bhattacharyya, B. K., 1969, Bicubic spline interpola- Smiﬁ:a Fceéphi‘(gségs'%’hreé fur:p.:l_t:f{;ro rams for con-
tion as a method for treatment of potential field tour.ing‘ma“p data: Can 7. Easth Sci vgs p. 324-327
c(]iati Geophysics, v. 3-4' p- 402-423, . Stiefel, E, L., 1963, An introducli(;n to numerical
ole, A. J., 1968, Algorithm for the production of con- * matheratics: New York Academic Press
tour maps from scattered data: Nature, v, 220, p. 5 : :
92-94,

Young, [}_., 1962, The numerical solution of elliptic and{

Courant, R., and Hilbert, D., 1953, Methods of math. ~Parabolic partial o erential equations, i Survey o

ematical physics: New York, Interscience Publishers, numerical analysis, edited by Todd, J.: New York,
Inc.

McGraw-Hill Book Co., Inc.
Crain, I. K, 1970, Computer interpolation and con-
touring of two-dimensional data: A review: Geo- : APPENDIX A
explor., v. 8, p. 71-86.

rain, 1. K., and Bhattacharyya, B. K., 1967, Treat. A set of difference equations for one-dimen-

ment of non-equispaced two-dimensional data with  sional interpolation is given, The curvature used’is .
a digital computer: Geoexplor., v. 5, p. 173-194,

De Boor, 1962, Bicubic spline interpolation: J. Math.
and Phys., v. 41, p. 212-218.

Hessing, R. C., Lee, H. K., Pierce, A., and Powers,
E. N., 1972, Automatic contouring using bicubic
functions: Geophysics, v. 37 p. 669-674.

\ie, A E. H., 1326, The madaerr’mtica] theory of + a( 5 jiii 0
elasticity: Cambri ge, University ress. Ui_s Uipe — iy L PR u; = U,
Melntyre, D. B, Pollard, D. D., and Smith, R., 1968, * i
omputer programs for automatic conlouring:* g,
Kansas Geol, Surv., Comput. Contr. no, 28,

Parter, S. V., 1959, On ‘two-line iterative methods At the end i=1, use

Ci = (uigs + uyy — 2us) [k,
Normal ’

Away from the ends, use




.1

-—

._........................................

| & ¢t o000

.

b ——

GEOPHYSICS, VOL. 37, NO. 4 (AUGUST 1972), P. 669-674, 4 FIGS.

G
WERS

A method is described for using a-digital com-
puter to construct contour maps automatically.
_ Contour lines produced by this method have
correct relations to given discrete data points
regardless of the spatial distribution of these
points. The computer-generated maps are com-
parable to those drawn manually.

The region to be contoured is divided into
quadrilaterals whose vertices include the data
points. After supplying values at each of the re-
maining vertices by using a surface-fitting tech-

o HEINRY K. LEE,* ALAN PIERCE,* AxND

AUTOMATIC CONTOURING USING BICUBIC FUNCTIONS{

nique, bicubic functions are constructed on each
quadrilateral to form a smooth surface through
the data points. Points on a contour line are ob-
tained from these surfaces by solving the resulting
cubic equations.

The bicubic functions may be used for other
calculations consistent with the contour maps,
such as interpolation of equally spaced values,
calculation of cross-sections, and volume calcu-
lations.

INTRODUCTION

Contour-map displays of data are widely used
in many engineering and scientific applications.
In the petroleum industry, contour mapping by
digital computer has been used as an effective
tool to analyze geological and geophysical data
and to depict subsurface structures. Thus, com-
puter mapping is playing a vital role in petroleum
exploration and production.

Several articles have recently appeared on
automatic contouring (Morse, 1969; Cottafava
and Le Moli, 1969; Pelto et al, 1968). Most
automatic contouring schemes generate a regular
grid prior to contouring. The original data points
which do not lie on the grid are neglected after
the grid has been constructed. Thus, contouring

& by this scheme works fairly well if the data are
¥: Uniformly spaced. For irregularly spaced data,
" the grid approach may be unable to honor every

data point, and the contour lines will fail to rep-
Tesent a surface which contains the original data

. Points, This paper describes a method that honors

€very data point by constructing a smooth surface
through the original data. The proposed method

makes use of multivariable curve interpolation
by Ferguson (1964).

DESCRIPTION OF METHOD

Let D be any set of points di=(zi, i, 2),
k=1, 2,.-., K, obtained from a continuous
function of two variables. In order to use the
method suggested by Ferguson (1964), D must
be a subset of an array {Ppm},n=1,2,.--, N,
m=1,2, ..., M, arranged so that the structure
obtained by- connecting adjacent points by
straight-line segments is topologically equivalent
to an N XM planar rectangular grid.

The array {Pam] is constructed by dividing

the set D into “vertical” subsets Vi, V3, - -+, Var

which satisfy the-following conditions:

1) If d, is a member of V,, and d; is 2 member
of Vg, then 2, <z BT

2) If d, and ds are members of the same vertical
subset V., the line connecting (x4, y.) and
(x3, ) must form an angle with the y axis
that is less than /4.

3) Each V., contains at least one member of D.

1 Mnnuscript received by the Editor October 30, 1971; revised manuscript received January 12, 1972,

* Amoco Production Company, Tulsa, Oklahoma 74102.

© 1972 by the Society of Exploration Geophysicists. All rights reserved.
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=-7850.
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F16. 1. Planar “grid” of sample data case,

4) If d, is 2 member of Vi or Var it must also

3) Each H, contains at least one member of D,
be on the bouxdary of the convex hull of D.

S . - be on the boundary of the convex hull of D.
Similar conditions are used to divide the set p
into “horizontal” subsets Hy, Hy, -, Hy:

For reasons of economy the number of these
1) I d, is a2 member of &, and dyis a member  vertical and horizontal sets should be kept to a
of Hy,,, then ¥, <. minimum; the number of such sets does not sig-

2) If d, and d, are members of the same hori.

zontal subset H, the line connecting

(%2, ¥2) and (xs, %) must form an angle with
the x axis that is less than /4,

nificantly affect the appearance of the map.

Now Inm=H,NV,, contains at most one ele-
ment, If 1, ., is nonempty, call the element it

m Is empty, a point must be

contains P, .. If v 4

4) If d, is a member of Hy or Hy it must also -

,.
b,
Faolen 7

kdsniy
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constructed that will satisfy requirements anal-
ogous to conditions 1) and 2) for V,, and H,..
The x, ¥ coordinates of a suitable point P,
where I, m is empty can easily be found by the
solution of two linear equations involving line
segments through data points in V,, and H,. A
sample data case depiciting the z, y locations of
the {Pnm} array is shown in Figure 1.
At each point in the array {P, .} which is not
a data point, a £ value is obtained by fitting a
polynomial to the surrounding data points. A
weighted least-squares fit is used. The weight
assigned to each of the contributing data points is
based on its distance from the point being gen-
erated and its position in relation to the other
data points. The reciprocal of the square of the
distance gives greater importance to nearby
points, while relatively isolated data points are
given more credence by diminishing the effect of
clusters. After all of the nondata points in the
array {P,,.| have been assigned values, they
have the same status as the original data points.
Determination of the weights is described in some
detail below. A recent report by Shepard (1968)
presents another approach to this type of inter-
polation problem.

Choices are first made for several fixed numbers
whose use is described below: the number 4L of
subdivisions of the circle; the number K+1 of

“ honzero levels of intermediate weights; the se-

Quence Wo>Wi>, - - -, >Wr>Wripn=Wgya
=, ++, =0 of such weights.

Now let (2, .m; ¥n.m) be a point at which a value
is to be supplied and let (a4, b, ¢0),8=1,2, . - -, I,

be the data points. Let

= (@i = %am)? + (bi — Y.m)? and
= tan“‘[(b‘ = Yam)/ (0 — xn.m)]-

Suppose 1 <i<I. For each l,0<I<L-—1, con-
sider the four sectors

/2L <0 < x/2 + wl/2L, ;

/24 #l/2L <6 < = + #l/2L,

7+ xl/2L <0< 37/2 + /2L, and
3%/2+ %l/2L <0 < 0or0 < 6 < /2L,

d;
6;

andlet J; ; be the number of data points (a;, b;, ¢;)
SECh that 6; and 6, arc in the same sector and
% <di. The weight of the point (as, bi, ¢;) is then

. Avtomatic Contouring
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g I
(1/d) 3 Wy,
1=0

It can now be seen that the dependence of the .

weights on L, K, and Wy, Wy, - . - » Wk is quite |
complex. Over a period of time several values
were tried for each of the parameters, Obviously
computations increase with increasing L and K,
vet L and K must be sufficiently large (and
Wo, Wy, + - -, Wk decreasing sharply enough) to |
provide a smooth transition when the process is
repeated at nearby points. Empirical evidence has
demonstrated that W,y=1, Wi=1/2,...,6 Wg
=Wg_1/2and L=10, K =4 are reasonable values
for the parameters.

Now a smooth surface (i.e., one with continous
first-order partial derivatives) through the points
of the array is constructed as a composite of
surfaces, one surface for each quadrilateral de-
termined by this array. For each point P, ..
= (Zn.my Ynumy Zn.m) in the array (which is neither
the top of a column nor the right of a row) we
follow Ferguson (1964) to construct a function

Sn.m(u,v)= [A-n.m(“’ ”): Vom(u, "): me(ﬂ, ")]

with the parameters restricted to the unit square
0<u,v<1 and with bicubic components

Xom(u,0) = 30 3 apeu™, (1)

Vom(u,1) = 35 3 bpeu’s',  (2)
and '

Zom(,0) = 33 gaus” (3)

p=0 ge=0

(see also Coons, 1967). .
To determine the coefficients of these bicubics,
we require first that

P ifu=p=0,

- - fu=1 v =0,
Sam(u, 1) = T ’ 4)

Poyim ifu= 0,v=1,

Pn-i—l.ln-i-l if Uu=yp= I,

so that the surface S, . contains the points P, .,

Pamity Payim, and Priimsr. This surface is de-
fined over a region which is approximately the
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quadrilateral determined by these points or,
more precisely, over the region to be bounded by
the curves [Xpm(0, 2), ¥,m(0, v)], [ Xnm(x, 0), £
Yn.m(u] 0)]. [‘Yn.m(ls "')r Y,._.,.(I, t’) ]; and [-Xn.m(“;
1), Yom(u, 1)]. :

If we have previously calculated prescribed
derivatives R, ,, and T, at the points B s WG
may require also that

Sher, plial

F
ntm Sp.miu 1)

Sn.miilaw

, g 3
Ra.m Hu= v=0 <l Pn, Sa-i, a0, w \.:
Snm Rumiy Hlu=1,0=0 |
(,9) = ; ’ (5)
du Rn-;-l.m ifu= 0, = °
P om®
Rn+1,m+1 ifu == ‘- e
and F16. 2. An element of the composite surfare.
Lim fu=0v=0 ;
an
55w Tomyy Hu=10=0
(x,v) = : ' (6) (8Snm1 ,
av Tot1m fu=0,9=1 5 (1,v) fu=0
Tﬂ+1.m+1 ifu= v=1. i
aSn.!n-i—l i
Together with the condition that %S, m/Oudy S, . v ©,0) ifu=1
vanish at (0, 0), (0, 1), (1, 0), and (1, 1), equations — (u,1) = { (9)
(4), (5), and (6) determine the coefficients of the dv 05a-1,m G iy D
bicubics in equations (1), (2), and (3) in terms of dv : .
the arrays ‘!Pn,m}, {Rn.m}, and {Tn.\n}-
It can be shown (Ferguson, 1964) that the x S ns1.m (#,0) ify =1
composite surface constructed in this manner is dv )
continuous, i.e.,
(see Figure 2).
Sam(l,7) fu=0 The derivatives R, and T, ., are calculated
. from the points near P,,, in order to avoid the
Sum(u, 1) = Snmt1(0,9) i u =1 (7) lengthy spline-type calculation of Ferguson

Snam(u,1) fo=0 (1964). We let
Snt1m(u,0) ifv =1

?

and smooth:

raSn.m—! &
(1,v) fu=0
ou
aS,. <
2 0,0) ifu=1
g 8
ﬂ, v =
du Daiim i )
(#,1) ifv=0
du
Pra,m
OSnt1,m i
" (,0) ifv=1, '
du F16. 3. Derivative calculation.
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D: T (xn.m-H. = xu.m)

and set

.. Thus E=(E,, &,
’ _Pu.n—‘.l and Pﬂ.”""l_‘P"

given to the vector conn

D: = (x.._... — In.m—-l)! + (yn.m Eas }'Naﬂ—l)::

]
+ Gnimtt = oim)

E = (1/D})(Pam — Pymy)
3 + (1/D2)(Pamys — P

ﬂ.m)'

E,) is a weighted sum of Fones

m; Breater weight being
ecting the closer point.

S

m‘ﬁ

Automatic Contouring

We finally set
Rn.m — (min (xn.nn - xn.!'!-—-lp
-(1/Ey)E.

Thus the x coordinate of R is min (2,

Tn,mipl — In'm))

~Zn,m-1,

Tnmi1~%nm) Which insures (as the method of |
Ferguson does not) that Xam(%, 0) is monotonj- |

cally increasing,
The vector T}, ,, is calculated in the same fash-
ion, using instead the points Py, and P,

n—1m
and interchanging the roles of x and ¥ (see Figure
3).

X -}rlﬂ

.
-]
o

=7850

7800

Fic. 4. Contour map of sample data case.
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Once the cocflicients of the bicubic function
* have been determined, the interpolation is essen-
tially complete and the composite surface is
available for many applications—contouring, de-
termination of a finer grid, calculation of deriva-
tives, approximation of double integrals, etc.
Typically, automatic contouring methods solve
for z at given coordinates, and the location of the
contour height is found by straight line inter-
polation. Linear interpolation in the true sense
of the word is not used in this particular method.
Points on the intersection of the plane z=H with
the surface S, are found for a given contour
height H. Given a value of v, 0<v<1, the cubic
equation

E( 5 o' )ur = B

=0 \ g=0

is solved for u. For each solution u between 0 and
1, x and y are calculated from equations (1) and
(2). The contour line is approximated by the
line segments between these points. Usually five
solutions are adequate to yield a smooth contour
inside the quadrilateral. If the contour is not
sufficiently smooth, more solutions are obtained.
The roles of u and v may be reversed depending
on the entry and exit positions of the contour.

CONCLUSIONS

The procedure described automatically pro-
duces, as noted, sufficiently smooth contour lines

which are correctly related to the data points, A

contour map generated by this method from the
sample data case is shown in Figure 4. Maps pro-
duced are comparable to those drawn manually.
Also, the use made of bicubic functions gives this
method additional advantages.

Most automatic contouring methods require
extensive interpolation directly from the set of
data points to form a closely spaced grid. Here
such direct interpolation is necessary only for

the positions in the array {Pom| which are s
occupied by data points, In some cases this inter.
polation is omitted entirely [i.c., if the origina]
data are arranged in a rectangular grid or other.
wise meet the requirements in Ferguson (1964)]

Even so, some benefit could be obtained by de:
veloping a more efficient interpolation method
and/or finding new methods of construc;
array {Pnm] in order to reduce the number of
positions not occupied by data points.

Once, however, this preliminary interpo;au‘on
has been performed and the bicubic functions
constructed, the determination of contoyr lines
can be followed or replaced by further interpola-
tion. Indeed, these functions are available for
many applications such as calculation of derjya-
tives or approximation of double integrals—ga¢
little additional cost and consistent with the con-
tour map.
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The GSC Model 3600-3
Buggy-mounted 36-inch
Dinoseis” System.

-~ Fhe©3C Model 3600-3 .
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highly mobilesurface énergy
source for soft, wooded or
rough terrain.

Some of the features of
the 3600-3 include: rugged
construction resulting in |
highly relioble operation;
modular design which allows
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mobile vehicles; passive
hydraulic catching system
eliminating secondary
impulses; the firing system
cycle time of 7 seconds which
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operatien.
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The GSC-20D
Digiphone® with
MLC-3 Land Case.

This subminiature digital
grade geophone combines
small size and low cost with
a high output - to - weight
ratio in a nearly indestruct-
ible aluminum alloy case.

Some of the unit's features
include: dual hum-bucking
coil, non-rolating coil sus-
pension system**, a wide
range of coil resistances
and frequencies, and easy
replacement in the field.

These are just three of
the fine seismic products we
make. For more information
about these or any other
Geo Space equipment, wrile
or call us. Geo Space Cor-
poration, 5803 Glenmont,
P.O. Box 36374, Houston,
Texas 77036. Phone: (713)
666-1611, Cable: GEOSPA.
Telex: 762-903. :

The GS-2000
Seismic Data
Acquisition System.
The GS-2000 data
acquisition system brings
eight of the most popular
features to field locations.
The GS-2000 can vertically
stack, produce a power
spectrum, correlate, pro-
duce monitor records with
annotation, perform system
diagnostic tesls, produce
demultiplexed output on
magnetic tape and perform
continuity and leakage fests
automalically. An automatic
roll-along switch is also
featured.
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CONTOURING AND THE CONTOUR MAP: S !

A NEW PERSPECTIVE*

BY
A, E, WREN#**

i . ABSTRACT

Weren, AL, 1975, Contouring and the Contour Map: A New Perspective, Geopliysi .
Prospecting 23, 1-17. =

With few exceptions, tradilional approaches to contouring have been too subjecti
Contouring and contour maps are too often discussed in terms more appropriate to it
than to scicnee. With hand contouring there is some justification for this attitude; Witk
machine (i.e, programmed) contouring there is none.

Hand contouring is highly susceptible to interpretive judgement and the interpre: o
is not bound by rigid mathematical constraints. Hence, in allowing for the interpret.
“freedlom ol expression’ it may be difficult to evaluate hand contouring in a o,
analytical and objective manner, Machine contouring, however, is bascd upon ;b -
matical formulation, 1t is therefore a consistent and nb]m_twc procedure, ideally suite;r i
objective definition and analysis.

[t can be demonstrated that the combined process of sampling plus contouring «on-
stitutes a two-dimensional filter. The contouring component is that part which introdi o
“distortion” or wavenumber discrimination. An ideal contour package is one that act. .
an all-pass lilter where the distortion is zero.

The application of filter theory to the evaluation of a machine contour package anid .
performance permits description in the more convenient language and terminology 1 '
wavenumber domain, rather than that of the space domain. A more important advan
is that the contour package can be subjected to the various standards of filter evalu... |
such as amplitude and phase response. J‘

The practical application, as \wll as the benefit, of llns approach is revealed thie |
the comparison, in both the bp"l.cc and wavenumber domains, of contour maps gener.a
from various machine contour packages.

INTRODUCTION
Larth scientists have been using contour maps for many years as a 1
mental tool to represent a variety of data sets. In recent years the adven
compters has led to attempts to duplicate interpretive contouring techi, «
by machine methods (Walters 1969, p. 232.4). Althongh considerable oy
has been made in developing an understanding of the human logie of contour .,

* Paper presented at the 42o0d Annual International Mecting of the S .G, Anala
Californi, November 26-30, 1972.
** Amoco Canada Petroleum Company Ltd, Calgary, Alberta Canaia,

’ --I,"'! Vi Gﬂ‘" @ ‘ ‘ Geophy sical Prospecting, Vol 23,
........ﬁ@ﬁem VPRI R el R R e
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£

and many computer programs are now available to pmdu'cu “reasonable”
contour maps, a technique to evaluate the reliability of the final map within the
context of the data itself has not yet been developed.

This paper will discuss one measure of how faithfully the {inal contour map
depicts the actual surface from which the sample data points have been
obtained. The "actual surface’ is represented by some finite number of
observations from discrete data points %, y, z in the region R concerned. The
contouring process then becomes the construction by some operator (human or
machine) of a hypothetical surface which is admissible. It can be argued that
the classification of surfaces derived from a machine contour package can only
be accomplished eﬁlpiricaliy and intuitively by one who is familiar with the
region, the data, and the conceptual situation, or by a machine programmed to
play by a prespecified set of rules pertaining to predetermined geological
models.

With few exceptions, traditional approaches to contouring have been too
subjective and contouring and contour-maps are usually discussed in terms
more appropriate to artsthan to science. With hand contouring there may be
some justification for this attitude; with machine, or programmed, contouring
there is none. Hand contouring is highly susceptible to interpretive judgement
or, as may be, to interpretive license where an interpreter is not bound by
rigid mathematical constraints. Hence, in allowing for an interpreter’s “free-
dom of expression” it is difficult to evaluate contouring in a totally analytical

.+ -and-ebjective manner. Machine contouring, however, is based on mathematical
formulation and is ideally suited to objective definition and analysis. g

light hine map

IF

Fig. 1.

Case History

_._Ihe-bhesns is developed in the manner of a case history where a series of
machine contoured maps from a common set'of data are examined. These
3 "'“““\""* maps are ﬁroduced from several different machine programs. Some of these
are available commercially, the others are “in-house”. The performance of
each package is compared in both the space and wavenumber domains. A set

“\ of aeromagnetic data from Western Canada is used to illustrate the technique
\ but it should be emphasized that any type of data set would suffice.
\ ““The flight line pattern is shown on figure 1. The mean spacing between cast-
" west lines is ong mile while the mean spacing between north-south tie-lines is

approximately four miles. The field data were recorded al one sample per
second which, at the survey flight speed, corresponds to a spatial horizontal ‘
sample interval of 61 m (200 feet). The limited available core of the computer |
necessitated resamplingtand this involved taking cvery sixth value, corre- '
sponding to a spatial interval of 300 m (1200 feet). Alter the necessary correc-
tions were applied, an x,y rectangular coordinate grid system was superini- - |
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L
posed on the location data. The input work tape thus lists the sampled data in
x, ¥, z format, where z is the total magnetic intensity in gamma defined at a
point in the x-y plane. The non-randomness of the spatial distribution coupled

with the high density along flight lines is identical to a typical seismic sample
distribution. '

s Tie ANALYSIS

Figure 2 illustrates the first contoured map generated from the program
referred to as A. Inspection of this map shows that muchof the high wavenumber, '
or detailed information (signal and noise) apparent on the analog flight records
had been eliminated in the contour process. Accordingly, the work tape was : . T A S

sinput to a second program referred to as B and the data re-contoured as shown ! A \\—ajl (-;—r%m
s 01 figure 3“3‘11(3 control parameters (cell size, smoothing factor, etc.) are of the & 2e2)) \ N/ / % N
__ same order, but visual comparisons between the two maps indicated major i _ e - ‘;—;’J-"/ F &
differences in anomaly amplitudes and wavenumber. This suggests the need
for a more abjective and rigorous analysis to determine the precise nature of the
differences llbetween the ynaps, and the true relationship of the maps to the
wminput-data.l oo
The-firstistep is to make the analysis comparative. This is achieved by
contouring Ithe same data set with a series of different programs (Ci, Cz, D).
The results are shown on figures 4 to 6. The difference between Cy and Cq is one
of cell sizei only. The second step is to determine an objective evaluation
procedure. |

(program Cy)

e T P

Existing Map-Analysis Technigues

Fig. 4. Contour map output

Until recently, the comparison of contour maps has been visual and sub-
jective. Now, with various quantitative techniques readily available and
easily applicable to computers, more rigorous and sophisticated map com-
parisons can be made (Merriam and Sneath 1966, p. 1105). For example, since
derivative, residual, and continuation techniques are mathematically equi-
valent to linear filtering in two spatial dimensions, it is possible to make
quantitative evaluations of the effects of two different filter coecfficient sets
without resorting to empirical tests on actual data.

However, in evaluating a contour map per se, the optimum approach is not

—:a comparative ane. To say something is “better’” is not to say that it is good
or even satisfactory. The contour procedure itself should be evaluated in terms
of an input-output relationship.

PR

A New Concept of Contouring

A contour map is often thought of as a projected and/or scaled replica of a
physical surface. This is not exact. The map is an approximation created by

'i..,..............................l.\%'="'l"-‘|“n"“““"‘-L-[.




. 8 : : - DI
: SRR i3 oty EVALUATION OF CONTOURING PROGRAMS 0

1),

~—

= i _\:__‘“;(.T\(j
‘ .,._f._sj})jf = i ,::'."’_-:___,"____. N ;( i;@ %@ﬁéﬁ\
o® - S
3SE:¢(f§%§nt:g;££ﬁ%§§§~
£ s TPOD)
i :ﬁ-—-‘”ﬂ L__,.-’(«
b ] —

e i P = /—”%-._-2 =k

o :
P =N i%jﬂhﬁ Eapey t:i;:zxiiizzzixg%ﬁ?ﬂ
— oSS 53 =2 A5 et _’
S § (= ’H 1 \_—/—\ \\r\g (\L\ééjzl
b2 ==\

Fig. 5. Contour map output (program C:I}

Fig. 6. Contour map output (program
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interpolation procedures from a limited set of information. The confliguration
of the map is therefore dependent on, first of all, the nature ol the interpolation
procedure and, secondly, the nature of the sampling grid. Since a given contour
map represents, in most cases, an approximate or distorted version of an idcal,
it can be said that the combined operation of sampling plus interpolation
constitutes an act of filtering. For the present it shall be called “contour
[itering”,

.Contouring as a Filter

| Sheriff (1969, p. 261) has defined a filter as “that part of a system which
discriminates against some of the information entering it"". The definition given
| by Bracewell (1965, p. 179) is more general. He states that the term “filter”
' can be used to denote a system having an input and an output.
Despite having both an input and an output, contouring is not a filter in
itself. The input and output are fundamentally different; the input is discrete,
«..«the_ontput is continuous. Unless the input and output arc of a similar nature,
it is not meaningful towonsider their relationship in terms of filter theory.
This can be overcome if sampling and interpolation are considered as a unit,
We then input a discrete set of data points and generate a continuous output
in the form of a contour map. If the contour map is then re-sampled at the
- origiital samplé‘input locations and if the re-sampling produces a set of points
identical td the initial sampled set then the contour (interpolation) procedure
has acted as an all pass filter, i.e. there is no distortion. If the converse is true,
then the col:ntouring is that part of the filter which has introduced the distortion
- or wavenumber discrimination. v
e __'lf_q__avoj% casting doubt on the validity of such an approach it may be
|
|

ouf that geophysical data processing utilizes many procedures, which
without al wvays specifically being called so, are, in fact, filtering procedurcs.
As discussed by Dean (1958, p. 97), operations such as upward continuations
and second derivative determinations are equivalent to linear filtering in two
spatial dimensions where the signal is regarded as a function of distance rather
than time. Operators for such objectives as second derivatives may be analyzed
and compared in the frequency domain and may be designed as band-pass,
low pass or high pass filters. Also, the derivatives may be thought of as in-
volving the conyolution of data with a mathematical function or sct of weights
| which constitutes a filter (Fuller 1967).

1
Desﬁn'ption! of the ““Contour Filter"
: It has béen established that contouring may be considered in the context
—= of a filter. One of the most signilicant features of a filter is that it is character-
ized by the relationship between its input and output, ie. one need not be

swewcerned with the interior of the filter per se, only with its terminal properties

~ 'Papoulis 1902, pp. 81-168). The input and output may be related in several

vways and, in the case of exploration maps, in either the space or wavenumber
:domains which are uniquely related through the Fourier transform.

“+ The advantage of this approach is that it permits description of the “contour

«filter” in the more convenjent language and terminology of the wavenumber

domain. A sccond, and more important advantage is that the contour package

may be subjected’ to the various standards of filter evaluation, such as amn-

plitude and phase response.

Tue EVALUATION

Introduction

In evaluating a’ contour package there are obvious advantages in utihzing
both the space and wavenumber domains. Ideally, this evaluation would
incorporate two-dimensional Fourier analysis. As this facility was available
only for gridded data at the time of the analysis, it was found expedient to
atilize an available one-dimensional Fourier analysis program to analyze the
filtering effects of the various contour packages on selected profiles, rather than
on the entire map. :

Space Domain Comparisons

The first step in the analysis is to plot sclected profiles of total intensity 1
gamma versus horizontal distance. The flight lines chosen are indicated by
A-A’ and B-B’ on figure 1. It can be seen from the map of figure 3 that these

+ two profiles best illustrate the varicd magnetic relief of the area.

Four profiles were constructed for the north-south line A-A’. The first wis
plotted from the original flight line data and the second from the re-sampled
data. The degree to which these match is of the highest importance becanse
with re-sampling comes tlie possibility of aliasing, if the sampling interval i
greater than the Nyquist interval. (aliasing may also be thought of as filtein..
since. the aliased sampleset will result in a frequency output different from i
[requency input). The spatial sample interval of the original data i1s b1«
(200 feet) and that of the re-sampled data is 306 m (1200 feet). The originai
data are therefore definitive of a profile whose component wavelengths
greater than 122 m (400 feet), whereas the re-sampled data are definitive ons
of those prafiles whose component wavelengths are greater than 732 m (2300
feet). LEquiralently, the aliasing spatial frequencies are 00077 cyclesime el
and .ooo120 cycles/meter respectively. However, as shown-on figure 7 the re-
sanpled profile is a close fit to the original profile suggesting a predommiiane oo
low wavenumber features and reducing the concern for aliasing.
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The third profile on figure 7 is constructed from the map of program A
(ligure 2) and the fourth from the map of program B (figure 3). The profile from
map BETAESTI excellent comparison with the resampled input. However, the
profile frolm map A bears only a vague relationship to the other three and ap-
Pears as a moving average type of profile where the spatial amplitude spectrum
has been éonsiderably distorted since the contour package A has acted as a
low-passl filter.
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. IFig. 7. Space domain profile comparisons (line A-A’).

It could be emphasized at this point that in interpreting magnetic data from
the point of view of depth-to-basement determinations, the amplitudes and
gradients of the flanks of an anomaly are the critical parameters. Conscquently,
il depth-to-basement calculations ware made on map A, the calculated depths
would be a factér of 4 times the true depth. The severe filtering imposed by
package A has rendered the map useless for interpretation. The effects are more
forcibly demonstrated in figure 8 where the magnetic relief is more. cecentric,
Figure g illustrates the comparisons of profiles B-13" reconstretidd from maps
Ci, Ce and D (ligures 4-0 respectively). In cach case it can i seen that the
spatial amplitude spectrum of the input is well preserved by cach package.
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Wavenumber Domain Analysis

i all analysis s ) inati rarions
The second step in the overall analysis is the ri{vtnrlllnllatnrJn of th.e v | ans
input and output wavenumber spectra. Accordingly, the analysis of
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Lt I:rnﬁ[m was carried further by the application of a harmonic analysis program
: Both amplitude and power spectra were produced for cach profile. The pro-
gram, unfortunately, did not have an option for phase spectra, thus these are

' not available. Their significance is therefore not appreciated at this time.
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- Figure roshows the amplitude spectra for the originaldata, there-sampled data
and the profiles from maps A and B along line A-A’. [t is therefore the wave-
number transform illustration of Figure 7. Figure 11 is the equivalent of Figure S
along profile B-B". Figure 12 is the amplitude spectrum cquivalent of I’i:'u:'r r';
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Fig. 11. Amplitude spectra (line 3-137).

oy
e

wepg profile B-B’ from maps €y, Ca and D (figures 4-0). It is obvious that

programs G, Cq

, and D do’ an excellent job in maintaining the input wave-

number spectra. Any fuither considerations in the context of these data as to
which is the “best” would involve an analysis of the phase-shift characteristics
- of cach package, since it is difficult to separate them on the basis of their

" amplitude spectra alone.
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Fig., 12, Amplitude spectra (line B-13).

Swmmary of the Analysis

This paper is in the nature of a reconnaissance. It sets out to emphasize
more of a method than a result. Hence, the comparative aspects need not b
considered in full detail. Visual inspection of map A (figure 2) inspires doubt as
to its reliability. This leads to a comparison with map B (figure 3) which

points out the differences but cstablishes nothing. An objective analysis cau
only be made by utilizing the input and output profiles in both the space =

=1,

wavenumber domains. This analysis does not depend on having the da:
contoured by other packages; it is scli-definitive, i.c. map A could be stany <
inadequate on the basis of its amplitude characteristics in the space anc

wavenumber domains,

The quantitative comparison of a suite of contour maps produced 1o

CONCLUSIONS

common data set is a somewhat tentative objective. At the present e ..
not possible to stipulate the ultimate criteria on which suchi compar::
might be made. However, the application of spectral analysis constitui
objective approach, regardless how abvious it might seem I retrospect



LYY Y ¢ XXX XXX X
m————v -— - W l l l Pl'.'E.J(WLrN' A . . . . . . . ? . ". . . . . ]i\g,[j.ATl?N g CU:\'T!U&NG I‘R.OGRA.\IS i

' i i i g : I 3 i initial study was
At this stage the following conclusions can be made: ; ypsmggperation of two colleagues, Bob Smith with wh;:un he ]m:_“ discu}ssiun
! ke : ; 5 Adine S ating -
{ ._zmas 1o For the first time a technique has been implemented which provides a i » undertaken and Eric l)ahlbcrglfm Dpr(;:.:dm% n::::t;::::n:t Arﬁoco for the
; Bt IS A > £ Th. I tende , aftin e e
T quantitative assessment of the reliability of the map in the context of the = * Thanks are also Chlt;‘(llﬂ(l to: fhe Drashing el
i input data. : } excellent quality of the diagrams.
i 2; I f)b\-'ious l‘hult the choic‘c of input parameters is critical. For cxu‘mplo, i ‘ REFERENCES
-; . the (.llffcrcncc in input cell size I(:afls to ‘tIu: difference between maps (,|' and ' . Brackweit, R., 1465, The Foprier Transform and its Applications, McGraw Hill Book
i Ca (figures 4, 5). The parameter determines the nature of the applied filter. G Brow Vsl St
o : P . . . - o : i ic i 1on;: eo-
Different cell dimensions will produce different filter responses. The use of Dran, W, C., 1958, Frequency analysis for gravity and magnetic interpreta
i i 7 as ¢ are force . Fa] 1 . g . shysics 23, 97-127. s . i g
: the smaller cell inmap (.Zz has apparently for C%.(Ii more detail into the contours i l»‘ur_':r‘u) 3 I_Ji. ?367 Two-dimensional frequency analysis and design of grid opcr;tur"
{ and stressed trends which are somewhat artificial, 5 ]\i.i:{in;; (-w',pl'lyr,fcs v. 11, Theory, The Society of Exploration Geaph);mcmis, 65 i‘:ﬂ
5 S 5 ] E y e . s : K - v e our m L
'._ 3. The amplitude spectrum of the output data could be illustrated on the map Merriam, D. I, and Sseatu P, H. A, 1966, Quantitative comparison of con :
| P el ; : R i 5 our, Geophys. Res. 71, 1105-117T5. ? P S LI -
| 1!0n551delthc a‘mplttu(le spectrum of the input data. Ideally, thcse. should P,\pojuus > 119%2, The Fourier Intepral and its Applications: McGraw-Hill Book Co.,
i be two-dimensional. If the [requency response of the program is then Pet ey .
\ § New York. ’ ssary of terms used in geophysical exploration:
i unacceptable, the input parameters can be redesigned and the map re- Suprier, R, E., 1969, Addendum to glossary o :
, :
. Geophysics 34, 255-270. : Vo it % i
[ 2 contoured. \\’M.‘l‘liiiiﬂ, }]’{. ]:‘3‘41969, Contouring by machine: a user's guide: A.A.P.G. Bulletin 53,

. 4. Although this analysis has dealt with acromagnetic data, it can be applied
to contour maps generated from any data set.

5. At the present time, for most two-dimensional studies, it is a prerequisite
that the data be input on a regular grid. Nonuniformly sampled data
introduces the necessity for gridding. Although there are programs available
which can produce gridded data from randomly distributed data, they are
restricted to a fairly small matrix generation.. Also, gridding and inter-
polation lead to filtering. Therefore, the application of these techniques
prior to spectral analysis is discouraged. This stresses the need for more
sophisticated programs which will perform two-dimensional harmonic
analysis on irregularly spaced data dircctly. Such programs are now com-
mercially available, -

6. Contour filtering is, in most cases, low-pass filtering. This is due primarily

S -th thediscriminating properties of sampling.

7. Interpolation contouring is a linear filter where the wavenumber response
depends on the initial data arrangement and intcrimiulion interval in
gridding. ]

8. A current problem in machine contouring is bias, or lack of it, in some

certain ldirection. The only way to attack this is to perform a two-dimen-
stonal analysis. If the predominant strike is at some angle to the traverse
lines, is mlc'p;lckugo preferable to another for maintaining the bias if desir-
able, or alternatively eliminating if undesirable? |
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ABSTRACT

Bovroxni, G., Rocca, F., and ZANOLETTI, S., 1977, Methods for Contouring Irregularly
Spaced Data, Geophysical Prospecting 25, 96-119.

The sampling theorem in two dimensions univocally defines a surface, provided that
_its values are known at points disposed on a regular lattice. If the data are irregularly
spaced, the usual procedure is first to interpolate the surface on a regular grid and then
to contour the interpolated data: however, the resulting surface will not necessarily
assume the prescribed values on the irregular grid.

One way to obtain this result is to introduce a transformation of the coordinates such
that all the original data points are transferred into part of the nodes of a regular grid.
The surface is then interpolated in the points correspondent to the other ‘crosspoints of
the regular grid; the contour lines are determined in the transformed plane and then,
using the inverse coordinate transformation, are transferred back to the original plane
where they will certainly be congruent with the original data points.

Nonetheless, the resulting surface is very sensitive to the interpolation method used:
two algorithms for that are analyzed. The first (harmonization) corresponds to the
determination of the potential of an electrical field whose contour conditions are those
defined by the data points. The second method consists in two dimensional statistical
estimation (krigeing); in particular, the effects of different choices for the data auto-
covariance function are discussed. ;

The solutions are compared and some practical results are shown.

I. INTRODUCTION

In this paper a method for contouring irregularly spaced data will be ana-
lyzed. This problem arises often in geophysical exploration; in gravimetrics,
the locations where the gravimetric anomaly has been measured are randomly
scattered throughout the area to be examined; in aeromagnetics, the data are
aligned on an irregular grid of the lines of flight; in seismics, the data to be
contoured may derive from seismic lines and/or wells, again scattered in the
plane and randomly placed, representing depths, times or velocities, and their
uncertainty will be variable. : 5!

» Paper presented at 37th Meeting of the European” Association of Exploration
Geophysicists, June 1975, Bergen, Norway. ;

«% AGIP — Attivita Minerarie, S. Donato Milanese, Milano, Italy.

#** Dolitecnico di Milano, Milano, Italy.
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In all cases the problem to be solved is to guarantee that the resulting
surface is smooth enough, without fictitious structures, and also that the data
points are honoured, exactly or approximately, depending on their nature.
The surface discussed in this paper, however, will pass strictly through the
data points.:

This problem has already been studied by several authors (Crain 1972,
Merrill 1973); the difficulties encountered will be analyzed and the structure of
a method for their solution will be outlined.

Since the problem is easily solved when the data are disposed on a regular
grid, the method used will be simply that of introducing a transformation in
the x — y plane such that the data in the transformed plane # — v have
integer coordinates in the interval

o< u<sL, oo <M

In general, the number N of data points will be smaller than L X M so that
to determine completely the surface in the plane # — v and therefore in the
plane x — y their values at the other crosspoints of the grid have to be inter-
polated.

Two algorithms will be given for that purpose: one ideally connected to
“krigeing”’, i.e., two dimensional estimation based on the stochastic prop-
erties of the data (Merriam 1973), the other serving to determine the electrical
potential of a field whose contour conditions are those defined by the data
points, '

Once the surface is defined at all the crosspoints of the grid the definition is
extended to all points of the plane using bicubic splines (Ahlberg, Nilson,
and Walsh 1967).

A simple method for the approximate determination of the contour lines is
also given. Some examples will follow.

2. GENERALITIES

Let us consider a surface regularly sampled on a grid with interval Ax and
Ay in the x and y directions, respectively,

For the sampling theorem, the spectrum of the sampled surface will cor-
respond to that of the original surface S(fz, fy) (Where fz, f, are spatial fre-
quencies or wave numbers in the x and y directions, respectively), periodically
repeated with centers in the points having the coordinates (see fig. 1)

I 1

fz = 7 fv = ;1= (1)

2Ax 2Av°

If S(fz, fy) is contained in the shaded lozenge, then we can interpolate the
surface from the sampled data without errors, provided that we use filters
whose Fourier transforms are (Papoulis 1968)
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in the lozenge

H(fz, fy) =1
H(fz. fy) = ©

This means that if the highest spatial frequencies contained in the signal are
low enough, a complete reconstruction is possible. This reconstruction is
obtained by means of the convolution of the sampled signal with the pulse

| response of the filter, i.e., the Fourier anti-transform of H(fz, fy). This pulse
| response decreases to zero practically in a few sample intervals.

:

elsewhere (2)

A\l

" 28y

Fig. 1. Fourier Transform of a sampled surface.

This means that each point of the continuous surface is interpolated from
the neighbouring points (Papoulis 1968).

In a later section we will see that it is possible to obtain a good smoothed
approximation of this surface without actually using the afore-mentioned
complicated interpolation procedure; it will be enough to approximate the
surface by reducing it to quadrilateral patches whose vertices are the cross-
points of the grid; the values of the surface inside the patches will be deter-
mined by means of bicubic spline interpolation.

On the other hand when the data are irregularly spaced, the sampling
theorem does not apply; therefore, we cannot have a univocally determined
surface passing through the data points.

An immediate consequence is that any interpolation method chosen has
many elements that can be fixed arbitrarily so that the final choice between
two “reasonable’” methods has to rely on ill defined “qualities” of the resulting
contour map.

2 0000000000000 000000000006F°
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In principle, the simplest method that can be adopted in the random spacing
case is the one of reducing it to regular spacing, interpolating in some way the
data on a regular grid. We are then reduced to the case previously analyzed.

However, noticeable difficulties appear if we try to apply this method. In
fact, no interpolating method has been found, up to now, capable of ensuring
that the, resulting surface will pass through the irregularly spaced data.
Obviously the difference in level will hot be very large if the grid interval is
small enough, but nonetheless differences will appear.

Therefore, a second approximation is necessary in which the data on the
regular grid are corrected so that the surface will behave as desired. :

Thus we see that, unless we accept some inconsistency between the original
data and the interpolating surface, the method that appeared so simple may
be expensive in terms of computing time, or even impossible, if the grid
interval is too large.

Another method, apparently more complicated, but in fact simpler, pro-
ceeds as follows (Hessing, Lee, Pierce, and Powers 1972).

A bi-univocal correspondence between the x — y plane and another plane
u — v is found

x = X(u, v)
: L= }-{{“: U)

u=U(xv)
v = V(x,y) (3)

such that the data points will correspond to points having integer coordinates
in the # — v plane. Once this correspondence has been established we are again
reduced to the regular case provided that we interpolate the surface at the
points corresponding to the other crosspoints of the regular grid in the ¥ —v
plane.

After interpolation we get the surface in the # —v plane and applying the
inverse transformation (3) we obtain the surface in the x — y plane.

In conclusion, the problems to be solved are, in succession:

a) finding the transformation (3) and its inverse;
b) interpolating the surface z(x, y) at all the points corresponding to the
crosspoints of the regular grid in the # —v plane.

3. DEFINITION OF THE CORRESPONDENCE BETWEEN %, v AND X%, ¥

To establish the correspondence (3) it is first necessary to define the points
in the x — y plane corresponding to all the crosspoints of the regular grid. To
accomplish this the data are divided into (L + M) sets of points corresponding
to the L rows and M columns of the regular grid. The subdivision is univocally
determined if the two following rules are observed:

ecccceceeet 111111 1T T TR



Fig. 3. Irregular grid connecting the data points to be contoured.
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L

a) all points contained in the set corresponding to one row will have their
ordinates smaller (larger) than the ordinates of the elements of the set
correspondent to the next (preceding) row. The same can be said for the
columns.

b) No two points may belong to the set corresponding to the same row (or
column) if the straight line connecting them makes an-angle greater than
/4 with the horizontal (or vertical).

Once these rules have been applied, L and M are determined and each set
corresponding to a row or to a column of the grid will contain at least one
datum point.

Abscissae x¢; and ordinates yyx of the points in the x —y plane cor-
respondent to the other crosspoints of the regular grid are independently
determined using linear interpolation between abscissae and ordinates of the

" neighbouring data points respectively (see fig. 2 and 3).

At this stage we know that
X(2, k) = xux
Y(i, R) = yix ; (4)

The transformation is extended to the points having non-integer coordinates
using bi-cubic spline interpolation (Ahlberg et al 1967).

4. INTERPOLATION OF MISSING GRID CROSSPOINTS THROUGH HARMONIZATION

As was observed before, the task of interpolating the surface at the other
crosspoints of the grid may be accomplished in several ways: we will first
discuss the case in which we will take as a prime requisite that the surface be
the smoothest possible, compatibly with the given data points.

We can then think of the surface as the electric potential of a field having
boundary conditions corresponding to the data points. -

Should this be the case, then the surface would have to satisfy the har-
monicity condition, i‘.‘e.

Vizx,y) =0 X, Y F Xk Yik ()

This condition can be easily converted to the corresponding one, valid for
the finite difference case, using only the values of the surface at the crosspoints
of the irregular grid in the x — y plane.

The relation that has to be satisfied is approximately

R TR ; o2
Bl —if;—ii‘ with g = (’;—‘) (6)
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where

20 = the surface value of the point to be interpolated;

2 = the surface values of the four given points surrounding the points to be
interpolated; ’

ro = unit distance;

7; = distance between z; and zo. ;

II

(Obviously this formula is not applied to the data points).

We start from a trial solution and then iterate the algorithm

Ny . )
z%}mrlj e L [z:}‘mi _+_ z_fi.i.]
Zpy

until the variations are small enough.

(7)

This method may appear rather odd, but in fact it is none other than smooth-
ing the surface (or at least some of its points) leaving the data points unmodi-
fied. The smoothing operation is continued until an asymptotic situation is
reached. To guarantee the stability of the method it is proper to refer to the
well known algorithms in use for the determination of the electric potential
fields. :

Instead of referring to the harmonicity equation one could have referred to
the biharmonic equation, ‘i.e. to the displacement of an clastic plate of a given
rigidity, constrained to pass through the data points; however, this could
create fictitious structures.

The reason for which we referred to the harmonic equation is simply the fact
that the smoothing algorithm is much cheaper to apply, but there are no valid
reasons not to refer to other elliptic partial differential equations.

In conclusion, this method of interpolation has no particular meaning
except that of giving results very similar to those that could be found in
“hand made” maps.

5. INTERPOLATION OF MISSING Grip CrosspoOINTS THROUGH A
Two-DIMENSIONAL ESTIMATION

To state it crudely, the essence of the interpolation method analyzcd in the
previous section corresponds to affirming that the surface is the smoothest
possible where we do not know its value.

Another interpolation method, having a completely different philosophy, is
the one corresponding to two-dimensional estimation.

In fact a more relevant approach could be the one of saying that the surface
““behaves” in the same way in the known and in the unknown regions. If now
we want to give a quantitative meaning to this idea, then we must introduce

"the concepts of stochastic fields (Papoulis 1968) uniform in the two directions. |

4000000000000 0000000000000000cee 111111 N RN
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\Ve will suppose now that z(x, y) is a random surface of which we can deter-
mine the covariance function

E{z[(x + E), (y + )] - 2[x, y]} = R(E, n) (8)
where E is the ensemble mean operator and £ and » are the components along
the two axes of the distance between the points. We are interested in the cases
in which z behaves similarly everywhere, and therefore the covariance function
R(x, y, E, ) depends only on &, n and not on x, y.

The problem is therefore the one of assigning a value to R(§, n): this can
be done by exploiting the data, finding their cross-covariance using spatial
averaging, and then fitting some parameter of a two-dimensional function.

For example, we could assign to R(E, n) an exponential form
R(E, n) = e=ki-60l ©)
and fit the parameters «, § to the cross-covariance of the data in the z, y
directions, respectively.

Other forms of R(E, n) might be

R(E.n)=1—ﬂ. VEr + 02 < Eo ;
Eo (10-a)
R(&,n) =0 elsewhere:
2 2742
R(E, 1) =1/ [1 + : 2;11] , or (x0-b)
R, (o)

In the first case, R(E, ) is anisotropical; in the other cases the behaviour in
the two directions is identical.

In the appendix the effects of the choice of a given covariance function will
be analyzed in more detail.

Let us suppose now that this problem is solved: then the problem of finding
the optimal linear interpolator of the surface at the point z(xo, yo) in the mean
square sense is easily Solved.

In fact we know that the estimator 2(;:.. Yo) is
N

E(xo, yo) = X am(¥o, ¥0) * Zm(%m, Ym), (11)

since we seek a linear interpolator. The weights «,, are found from the condition
that

E(zo — z0)? = €2, (12)

»ooooooooooooooooooooooooopooogg""|---4--——-
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be minimal. Developing the sqﬁare and applying relation (8) we sce that the
search for the unconditioned minimum leads to the so called normal (Wiener-
Hopf) equations

ZLom *Tmoa = Tn T HE= S C e | (13)
where
"m,n = R{xm —-— %, Ym— Yn)
rn = R(xo—2xn, Yo—1ya) (14)
and %y, ym is the location of datum point z,. This interpolating procedure is
optimal in the case that z(x, y) is a spatially stationary, zero mean Gaussian
varilate,

6. INTERPOLATION IN THE PRESENCE OF A TREND

If a known trend is superimposed on the data, the best thing to do is to
remove it, to apply to the residuals this interpolation method and then to
replace the trend. If it is not known, a reasonable approach might be the one
of subtracting a low order two-dimensional polynomial, such that the residuals
will appear stationary. There is no general rule for this operation, at least not
until one has specified what is intended by trend, as well as conditions that may
ensure that the trend has been properly removed.

Another approach is that of imposing that the cocfficients of the interpolator
be “transparent’ to the trend. In other words let the trend be expressed by

Sy = E e flw) (15)

where the # are coefficients and fi(x, y) arc a set of ¢ given smooth functions of
x, y. Then we have to impose the following set of conditions on the N inter-
polation weights

N i
Z on fi(xm- }’m) = fl (xoa ¥o), P =T q. (16]
o=
These conditions correspond to the imposition that the result of the inter-
polation be independent of the chosen trend.
In the simplest case, we can pose ¢ = I, f(¥, ¥) = 1, and conditions (10)
reduces to '

N

3 o =1 (17)

In this case the interpolation result is independent of a possible constant
that may be added to all values of the surface.

Applying (17) we are in a case of bounded minimum, that can be solved
using Lagrangian multipliers,
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The aspect of the interpolaied surface changes depending on whether con-
dition (17) s applied or not: in the latter case, in fact, the weights (and there-
fore their sum) will tend to zero if the distance of the point to be interpolated
from the other points is large enough. This may contribute to give an aspect
to the surface of being “peaked’ around the data points.

L}

7. ComparisoN BETWEEN THE Two METHODS OF INTERPOLATION

The most noticeable difference between the two methods discussed in the
previous sections is that using the “harmonization” procedure the interpolated
values never exceed the range of the data; maxima and minima of the surface
are data points. This is peculiar to harmonic functions where maxima are
always at the boundaries. The interpolation procedure corresponding to two-
dimensional estimation leads to interpolated values whose range may greatly
exceed that of the data, depending on the covariance function chosen, as will
better be seen in the appendix. In general, this algorithm will tend to add new
features to the surface extrapolating local trends.

Another interesting feature of the “harmonization’’ procedure is the smooth-
ness of the resulting surface. Application of the algorithm (11) in general
creates “‘noisy” surfaces, and more so if the set of data points for the inter-
polation is changed from one point to the other.

This may happen when N is very large and the solution of the system (13)
becomes clumsy. In this case, one could exploit the fact that if a point Py is
between the point to be interpolated Po and another point Pe, then the weight
to be given to the value of the surface at P: is much smaller than that cor-
responding to the valued at Pi. Then to get a good approximation of the solu-
tion of the set (13), it is enough to use for the interpolation the 8 or 16 points
(one or two for each octant) nearer to Po. This indeed simplifies the search for
the solution, but may add disturbances to the results, since the set of points
used as the basis for the interpolation changes from one point to the other.

Good results may be obtained using the two-dimensional estimation as a
basis for the harmonization. After the first interpolation using (11) the iterative
algorithm (7) is used until the noise has been'smoothed out. If the iterations are
continued, all the structures generated by the extrapolation of the local trends
are flattened and a complete smoothing is obtained.

By properly choosing the number of iterations a good compromise between
the two approaches can be found.

8. Bi-Cusic SPLINE INTERPOLATION

Up to now we have determined how to interpolate the functions at all the
crosspoints of the irregular grid. To determine the function for all the values
of x, y we turn to bicubic spline interpolation. N

oo
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We know that

X(u, v) = x4,
Y(u, v) = yox =1 =1, 59k
Z(u,v) = 24k v=4hk=1,... M. (18)

We will first determine the functions X (u, v), Y(u, v) for non integer values
of #, v. To detérmine the bicubic splines we need the derivatives
X W WX Y
w’ dw!' W’ dw
These are found as follows: the parabolas with vertical axes passing through
the points (¥¢- 1.k, ¥i-1,k), (%6,k, Vi,k), (F141,k, Yi+1,k) are found and their tangents
at the point (¥4,x, y1,5) are determined. This value is assigned to
X /Y
T w/

%=

. g (x9)

The actual values of the derivatives are found by multiplying ¢ times the
length of the minor of the two sides linking the point with the neighbouring
ones in the # direction. The same is done for the v = constant links.

Once the transformations X (», v), Y (u, v) are completely determined the two
derivatives 2Z/du, 2Z/dv have to be found. This could be done using the two-
dimensional estimation algorithm, but the result is too noisy. The tangent
plane to the surface at the point Py is therefore defined to be the plane passing
through P best fitting the four adjacent points. Once 3Z/dx, 3Z/dy are found,
the derivatives are determined with the following formula:

YA W WX W WY
U X M dy
2z 2Z X 2w Y
hiY })x. oY + W

(20)

g. THeE CONTOURING

Once the surface has been defined, its level curves remain to be determined.
This is accomplished by first finding their intersections with the irregular grid
in the x — y plane, or with the regular grid in the ¥ — v planc. These inter-
sections have now to be interconnected: the tangents to the intcrconnecting
curve are already known, at least at the points of interscction previously
found.
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56

[f the curye intersects the patch at only two points then it may be e'nough
to approximate it with a cubic, defined with end-points and end-tangents. If
the intersecting points are more than two, say four or more, information has
to be added to determine which point has to be connected with which
other. ;

In general, this could be accomnplished only by decomposing the patch into
smaller surfaces and determining the intersections of the curve with the new
boundaries. A simple method, but effective enough, consists in adopting the
interconnection that corresponds to the minimal total tensile strain of the
splines. '

|

67

10. ENRICHMENT OF THE LATTICE

With the algorithm described in section 3, the lattice may be too uneven
“and the interpolation may show signs of that. It is useful therefore to regularize
the grid adding new rows and columns, so that the maximum interval be-
tween subsequent rows or columns is limited to a preset value. All the re-
mainder of the contouring is left unchanged. '

11. PracTiCAL EXAMPLES

The contouring of the data in fig. 2 are shown in order to give an idea of the
results of the application of the algorithms previously derived. If the rules in
section 3 are followed, the irregular grid is that in fig. 3. The contouring of the
data using two-dimensional estimation is illustrated in fig. 4. The covariance
used is that of formula (10-b); the distance Eo varies to adapt to the local
structure of the data. The result of twenty iterations of algorithm (7) is shown
in fig. 5.

The anomaly at abscissa 23 is reduced, the trough at right is flattened,
and the 5000 line is split. Also the contour lines are smoother.

If the lattice is enriched as in fig. 6, the contouring without harmonization
is that in fig. 7. The surface appears more noisy and with more structures: see,
for example, the 4000 line at the left. After twenty harmonization steps
(fig. 8), the noise is much smaller.

If the lattice is enriched further (fig. 9), the surface becomes very noisy if
no harmonization is applied (fig. 10). On the other hand, with twenty iterations
we obtain the best results (fig. 11). The structure at the right now is much less
clongated due to the higher regularity of the lattice.

v twenty harmonizing iteratins.

a contouring after interpolation on the grid of fig. 3 u-ng two-dimensional
estimation followed b

Fig. 4. Dat

30
19

a =3 o
i (] -
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Fig. 7. Data contouring after interpolation of the grid of fig. 6 using two-dimensional
estimation.
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Fig. 8. Data contouring after interpolation on the grid of fig. 6 using two-dimensional
estimation followed by twenty harmonizing iterations.

DRI ONDRINOLNOD 01 SAOHLINW

Y1Vd adaovds ATUvIND

€11



O . ;
I14 G. .DOH.OZU~. F. ROCCA AND S, ZANOLETTI METHODS FOR CONTOURING IRREGULARLY SPACED DATA 115
3 2 - 5 ]
= | | | &
w w
]
mglm
r:\_.._ll
[ = J—— T —-
o T w
M—T\] B @ T b m.
f—t —t = w
| pe i LR 5 g
= M~ -
N B £
i _m M =] WV & .M
o -
et _ _IamHi.._ 1] —a = wn
IEEEES :
M___ =
T A N BEE & ¢
s SN RS : =
T _.\ > (=]
] = = - 2
/.\./ hi=) .n.
AR e |
- - =
N AN ra sV 2
|| w .
w ﬂ_ M | g 88
= e S 7 5 2%
i T S e e g -}
- i g i 0 5
S \ﬂ __~ _ / / B L S e
= | 1~ m m\a “
NN mEEEtAm e m
AR ; :
, =8 5 =
11 BN S BB © 5
1 f = 21 WiE E 2
3 [ 1] \ I & g
11 \ 3 . -
8 v 11 / # —8 & 2
: N E .
\ = o il . & 2
Ll D 2 e B e 59 i
P \_l.l.l
T LA L]
S — 7 1 —=
2 H 5
Pt
e I _ ﬂ i S ﬁ _ i
=) @ * o

l...“..w...........w............_....s...m..ﬂum--,\—.w—-ﬁ._.._..w_..—. b & mam



5
i

110 G. BOLONDI, F, ROCCA AND S, ZANOLETTI
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Data contouring after interpolation on the grid of fig. 9 using two-dimensional
estimation followed by twenty harmonizing iterations.

Fig. 11.
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12. CONCLUSIONS

We have discussed a system for the contouring of randomly spaced data,
guaranteeing the full respect of the given points. The two algorithms for the
estimation of the crosspoints of the irregular grid are somehow complementary
in that the two dimensional estimation may be a good starting point for the
successive iterated smoothing. The enrichment of the lattice in respect to the
minimal covering may be helpful to regularize the lattice itsclf, even if it may
be expensive in computer time.

The same algorithm could have been applicd in presence of faults: in this
case though, the use of a regular lattice, and therefore the renouncement to the
full respect of the data, is of great help to simplify the data management.
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APPENDIX

Effects of the choice of a covariance function

We wili now see the effects of the choice of a covariance function. For
simplicity, we will examine a monodimensional, symmetric case. We want to
estimate z(0), from z(d), z(— d), z(ds), 2(— dz). We will also suppose that

ds > d (fig. A-1). For symmetry we require that the estimator be

S 2(0) =R [Z(dl) + Z(-—- {51)‘_1 -i- t’ﬁz{Z(dz} BE 2.'(-—- tf._)” (A-I}
( T1=Fk"2 + ko2

Y

Azd,-d,

A-1. Interpolation using mono-dimensional estimation with different covariance func-
tions. Dashed curve: covariance concave down. Continuous curve: covariance concave up,

SoGOGOCCSRNRRTTITTITTY
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The matrix of the system in this case of bounded minimum of the error is

R(o) R(Zﬂ'l) R{dz —_ dl) R(da }- d1)  ff ki H{d}.)—

R(2d,) R(0) R(d2 + di) R(ds —dy) 1 ki R(dy)
R(d2—d\) R(d:+ d1) R(0) R(zds) 1| X | k2 | = | R(d2 (A-2)
R(ds + di) R(d= —dy) R(2d-2) R(o) I ks R(da)

I I I I 0 Mz I
Calling
a = R(0) — R(d: — d\) ¢ = R(d: + di) — R(2ds)
b = R(2d,) — R(d= + d1) d = R(d) — R(ds) (A-3)
J
A=zd-d,
A-2. Possible covariance functions.
-
we have
B a—c¢+ 2d " a+b—2ad

If we have extrapolation, ki, k2 must have opposite sign and therefore one
of the two following sets of inequalities has to be true:

- a+z2d—c <0
a4 b—od =0l (A-5)

a b—z2d <o
100000000000000000000000¢

a-+2d—c¢ >0
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Now let us suppose that in the range of interest (Fig. A-2):

(i) R(x) is concave upward

(i1) R(x) is lincar

(iii) R(x) is concave downward

Incase (i),a >b >c¢ > d > o and therefore we can never have extrapola-
tion since
a+2d—c >0

a+ b—z2d >o0;

in case (i), we have always &y = 1/2 and k2 = 0;
in case (iii), 0o <a < b <c<dand therefore (A-5) is satisfied and we do
have extrapolation.

This very simple example shows that, at least in this case, if we choose an
exponential function for R(E), the interpolated values will not exceed the range
of the data; the opposite would have happened had we chosen for the
covariance function a Gaussian of the type R(E) = ¢-&% and also we had
di, d: < Eo.

In the two-dimensional non-symmetric case, these results are probably still
valid, but no definite proof is available at present. It is nonctheless intuitive
that if the points which aré the basis of the interpolation are at such distance
from the point to be estimated that the covariance function taken at thesc
points is still rather flat, the algorithm will tend to interpret the surface as
locally very even; this may correspond to the strong extrapolation of local
trends.
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A METHOD OF BIVARIATE INTERPOLATION AND
SMOOTH SURFACE FITTING FOR VALUES GIVEN
AT IRREGULARLY DISTRIBUTED POINTS

Hiroshi Akima *

Abstract -— A method of bivariate interpolation and

smooth surface fitting is developed for z values given at points

irregularly distributed in the x-y plane. The interpolating func-
tion is a fifth-degree polynomial in x and y defined in each trian-
gular cell which has projections of three data points in the X-y
plane as its vertexes. Each polynomial is determined by the
given values of z and estimated values of partial derivatives at
the vertexes of the triangle. Procedures for dividing the x-y
plane into a number of triangles, for estimating partial deriva-
tives at each data point, and for determining the polynomial in
each triangle are described. A simple example of the application
of the proposed method is shown. User information and Fortran
listings are given on a computer subprogram package that imple-

ments the proposed method,

Key Words and Phrascs -— "Bivariate interpolation, interpolation,

partial derivative, polynomial, smooth surface fitting,
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1, INTRODUCTION

In a previous study (Akima, 1974a,b), we developed a method of
bivariate interpolation and smooth surface fitting. The method was de-
signed in such a way that the resulting surface would pass through all
the given data points. Adopting local procedures, it successfully sup-
pressed undulations in the resulting surface which are very likely to
appear in surfaces fitted by other methods. Iike many other methods,
however, this method also has a scrious drawback. Applicability is
restricted to cases where the values of the function are given at rec-
tangular grid points in a plane; i.e., the values of z = z(x,y) must be
given as z;. = z(xi,yj) in the x-y plane, wherei =1, 2, ..., ng and

1)

Jie ks 23 sova B This restriction prevents application to cases where

Y.
collection of data at rectangular grid points is impossible or otherwisc

impractical,

The subject of the present study is bivariate interpolation and
smooth surface fitting in the general case where the values of the func-
tion are given at irregularly diétributcd points in a plane; i.e., the
case where the z values are given as z; = z(xi,yi), where 3 = b 2y waiy
n. Despite potentially wide applicability of a method of bivariate inter-
polation and smooth surface fitting for irregularly distributed points,

studies for developing such a method have not been active in the past.

Two types of approaches are possiblg; one using a single global
function, and the other based on a collection of local functions. In the
former approach, the procedure ofter. becomes too complicated to
manage as the number of given data points inc reascs. Morcover, the
resulting surface from the former sometimes exhibits excessive un-

dulations. For these reasons, only the latter approach is considered

in the present study.
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Bengtsson and Nordbeck (1964) suggested a method based on par-
titioning the x-y plane into a number of triangles (cach triangle having
projections of three data points in the x-y plane as its vertexcs) and on
fitting a plane to the surface in each triangle. Obviously, the resulting
surface is not smooth on the sides of the triangles although it is con-
tinuous. In addition, their suggestion for partitioning so that the sum
of the lengths of the sides of these triangles be minimized is too com -

plicated to implement,

Shepard (1968) sugpested a method based on weighted averages
of the given z values. The basic weighting function is the squarc of the
reciprocal of the distance between the projection of each data point and
that of the point at which intcrpolation is to be performed. The actual
weighting function is an improvement of this basic weighting function in
that the actual function corresponding to a distant data point vanishes.
Through this improvement the originally global procedures in this
method became local. This method has several desirable properties,
It takes into account the "shadowing' of the influence of a data point by
a nearer one in the same direction. It yields reasonable slopes at the
given data points. However, it fails to produce a plane when all the
given data points lie in a slanted plane; this property is considered to

be a serious drawback.

In conjunction with vanatmnal problems containing second -order
derivatives, Zlamal (1968) chscussed an approximation procedurec using
fifth-degree polynomials in x and y over triangular regions in the x-y
plane. To determine the coefficients of the polynomial for each tri-
angle, he uses, in addition to the z values and the first and sccond
partial derivatives (i.e., 2z

z @i s and zyy) at the three ver-

Yoo sxx? Uxy
texes of the triangle, three partial derivatives, each differentiated in

‘,

the direction normal to one of the three sides of the triangle at the
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midpoint of the side in question., ‘liie theory was peneralized to

(4m + 1)st-degree polynomials for functions m-times continuously dif -
ferentiable on a closed triangular domain by Zenisek (1970). Although
a comprehensive interpolation method is not suggested in their papers,
their papers were instrumental in stimulating portions of the ideas

developed here,

In the present study, we develop and propose a method of bivari-
ate interpolation and smooth surface fitting that is applicable to z
values given at irregularly distributed points in the x-y planc. As in
the method for rectangular grid points developed in the previous study
(Akima, 1974 a,b), the interpolating function used in the method pro-
posed in the present study is also a smooth function; i.e., the inter-
polating function and its first-order partial derivatives are continuous.
The proposed method is also based on local procedures. The surface
resulting from the proposced method will pass through all the given

data points.

In this report, the proposed method is outlined in section 2,
with some mathematical details in Appendix A. A simple example
that illustrates the application of the proposed method is shown in
section 3. Some pertinent remarks are addressed in section 4. In
Appendix B, user information and Fortran listings are given on the

IDBVIP/IDSFFT subprogram package that implements the proposed

a_—
method,
Ll
i N L o
& 38 3
v g = ~
E'.g'—, = = T_z
- N v < [
e - EE - E "5 EE£
< L ass s = c =
£ X 58T, S z 2ESEE
E2 ESsgxgs = Y LS . ES
i SfcEc 8 < Y2 E .
: S 3gEL LT = - tY 92 2
- c v T 5 = LT L] ~ .
g ‘B o 25 &8¢ ¥ & VM= 2 .
= O 8 < ~N o= i o = e -
O 8 ST VxaX= 2y W e s By ! €
ZEt v €3 E,.SE&E “ 2 S35 =8 = E
— B E == ¥ Beg O - - - L= " 3
“"3 T R fR o« I g E 2
— 4 '— :‘— & v - L
Za 2 Ay SS8*YSEfE X A % 2
F E i = o B¥ ° oLy = 2 - - ] e
v g " Do :5‘:52 i g & “gﬂ = -
:g é 55‘1 ksgu 3%“): - : - % :'
- -~ m R iy — -
Enzmesa) A~k e S8 ani W 3 ° ‘.-5&5 v o

|

e, conductmg osbader excited by a

iy |

et anomabes due (o arhitrars

R (ﬁu—rdu with reply by authors

664

ahwon, S T Wurd

t £ Sheriff

067



D....................Q......................._‘......

2. DESCRIPTION OF THE METHOD

In this method the x-y plane is divided into a number of triangu- '
lar cells; each having projections of three data points in the plane as
its vertexes, and a bivariate fifth-degree polynomial in x and y is ap-

plied to each triangular cell,

For a unique partitioning of the plane, the x-y plane is divided
into triangles by the following steps. First, determine the nearest
pair of data points and draw a line segment between the points. Next,
find the nearest pair of data points among the remaining pairs and draw
a line segment between these points if the line segment to be drawn
does not cross any other line segment already drawn. Repeat the

second step until all possible pairs are exhausted.

The z value in a triangle is interpolated with a bivariate fifth -

degree polynomial in x and y, i.e

L

5 5-j .
z(x,y) = % Z;q,kxjy 7 (1)
j=0 k=0

The coefficients of the polynomial are determined by the given » values

at the three vertexes of the triangle and the estimated values of partial

derivatives Zy s z

Zys
imposed condition that the partial derivative of z by the v

xx’ Zxy’ and ¥y at the vertexes, together with the

ariable meas-.

ured in the direction perpendiculamto each side of the triangle be a

polynomial of degree three, at most, in the variable measured nlong

the side. The procedure for interpolation in a triangle including de -

termination of the coefficients of the polynomial is described in detail

in Appendix A, Smoothness of the interpolated values and therefore

smoothness of the resulting surface along each side of the triangle is

proved also in the Appendix.



— = “Procedures for estimating the five partial derivatives locally at
each data point are not unique., The derivatives could be determined
as partial derivatives of a second-degree polynomial in x and y that
coincides with the given z values at six data points consisting of five
data points the projections of which are nearest to the projection of the
data point in question and the data point itself. This procedure is a
bivariate extension of the one used in the univariate osculatory inter-
polation (Ackland, 1915). Adoption of this procedure has an advantage
that, when z is a second-degree polynomial in x and y, the method
yields exact results. As will be shown in section 3, however, this

procedure sometimes yields very unreasonable results.

We will take a different approach and estimate the partial deriv-
atives in two steps; i.e., the first-order derivatives in the first step
and the second-order derivatives in the second step. To estimate the
first-order partial derivatives at data point P0 we use several addi-
tional data points Pi o= 1 Saoses nn) the projections of which are
nearest to the projection of PO sclected from all data points other than
P_. We take two data points P; and Pj out of the n_ points and con-

0
struct the vector product of POPi and POPJ‘; i.e., a vector that is

perpendicular to both POPi and P(}pj with the right-hand rule and has

a magnitude equal to the area of the parallelogram formed by P

12
0 i
and POPj. We take P; and Pj in such a way that the resulting vector
product always points upward (i.e., thewz component of the vector

product is always positive). We construct vector products for all

possible combinations of P[)Pi and pOPj (i#j) and tak‘e a vector sum
of all the vector products thus constructed. Then, we assume that the
first-order partial derivatives z, and ZY at PO are estimated as thosc
of a plane that is normal to the resultant vector sum thus composed.

Note that, when n = 2, the estimated z, and ZY arc equal to the partial
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derivatives of a plane that passe¢s through P P, and P, . Also note

¢ | 2
that, when n = 3 and the projection of PU in the x-y plane lies inside

the triangle formed by the projections of Pl, Pz, and P3, the esti-
mated z_ and ZY are equal to the partial derivatives of a plane that
passes through Pl, Pz, and P3.

In the second step, we apply the procedure of "partial differen-
tiation' described in the preceding paragraph to the estimated z,,
values at P, {i=0, 1, 2, ...5 n,) and obtain estimates of e (z}()}c
and z-“Y = (zx)y at PO. We repeat the same procedure for the esti-
mated Zy values and obtain estimates of Zyy (?.Y)x and z__ = (zy)y.
We adopt a simple arithmetic mean of two zxy values thus estimated

as our cstimate for Zxy at PD'

The selection of n 1s again not unique. Obviously, n_ cannot
be less than 2. Also, it must be less than the total number of dati
points. Other than those, therc seems to exist no theory that dic-
tates a definite value for n . The best we can say is that, based on
the example to be shown in section 3 and on some others, we rccom-

mend a number between 3 and ° finclusive) for n

e |
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3. APPLICATIONS

Using a simple example taken from the previous study (Akimna,
1974 a,b), we illustrate the application of the proposed method. We
take a quarter of the surface shown in the example in the previous
study and sample 50 data points from the surface randomly. The
coordinate values of the sampled data points are shown in table 1.
Knowing from the physical nature of the phenomenon that z(x,y) is a
single-valued smooth function of x and y, we try to interpolate the 2z

values and to fit a smooth surface to the given data points,

Figure 1 depicts contour maps of the surfaces resulting from the
30 data points with asterisks in table 1, while figure 2, from all the 50
data points in the table. In these contour maps, projections of the
data points are marked with encircled points, In cach figure, the ori-
ginal surface from which the data points were sampled is shown in (a).
The surface fitted with piecewise planes (i.e., the surface consisting
of a number of pieces of planes, each applicable to one triangle) is
shown in (b). Of course, such a surface is continuous but not smooth.
The surface fitted by the method that estimates the partial derivatives
with a second-degree polynomial is shown in (c). The surfaces fitted
by the proposed method using three, four, and five additional data
points for estimation of partial derivatives at each data point are shown
in (d), (e), and (f), respectively. In drawing thesc contour maps, the
z values were interpolated by their resf:f:'.ctiv(: methods at the nocie.s of

a grid consisting of 100 by 80 squares; in each square, the z values

were interpolated linearly.

Figures 1 and 2 indicate that the proposed method yields reason-
able results although these results might not necessarily be satisfac-

tory for some applications. In ti -se figures very little difference is
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Table 1,

An example set of data points.

(Thirty points with asterisks arc used in figure 1,
while all 50 points are used ia figure 2,)

i X; Y 25 ! X Vi s
o+ 24,16 1,240 22,15 26 3.22 16,78 39.93
2 % 24,20 16,28 9-2.83 27 * 0,00 0.00 58,20
3 12,85 3,06 22,11 28 ¥ 9,66 20.00 4.73
4 % 30,85 10.22 -7.97 2 2.56 3,02 50,55
5 % 10,35 4,11 22,33 30 # 5,22 14.66 40.36
6 24.67 2.40 10,25 31 % 11.77 10,47 13,62
7 % 19,72 1.39 16,83 32 17,25 19.57  6.43
8 15.91  7.74 15,30 33-% 15,10 17.19 12.57
9 % 0,00 20.00 34,60 34 % 25,00 3.87 8.74
10 * 20,87 20.00 5.74 35: - A2, ¥% 10,79 ' 13. 71
11 6.71  6.26 30.97 36 = 25,00 0.00 12,00
12 3,45 12,78 41,24 37 22.33  6.21 10.25
13 * 19,99 4,62 14.72 38 11,52 8.53 15,74
14 14,26 17,87 10,74 39 * 14,59 8.71 14,81
15 = 10,28 15,16 -21,59 40 * 15,20 0.00 21,60
16 * 4,51 20,00 15,61 4] 7.54 10,69 19,31
17 17.43 3,46 18,60 42 * 5,23 10.72 26.50
18 22.80 12.39 5,47 43 17,32 13,78 12.11
19 * 0,00 4.48 61,77 44 % 2,14 15,03 53,10
20 7.58 1.98 29,87 45 * 0,51 8,37 49.43
21 * 16.70 19.65 6.31 | 46 22.69 19.63 3.25
22 * 6.08 4.58 35,74 47 * 25,00 20.00 0,60
23 1,99 5.60 51,81 48 5.47 17.13 28,63
24 * 25,00 11.87 4.40 49 * 21,67 14.36 5.52
25 * 14,90 3,12 21,70 50 * 3,31 0,13 44.08
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(b) Lineor I

nterpolation

PREL (e,

{c) 2nd-degree-polynomial Method

=0
V] A
A J

| Sl -

B

A
A \
.

(e) Proposed Method (4 points)

(f) Proposed Method (5 points)

Figure 2. Contour maps for the surfaces fitted to 50 data points

given in table 1.
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exhibited in the resulting surfaces due to the difference in the number
of data points used for the ¢stimation of partial derivatives in the pro-
posed method. Figures I(c) and 2(c) demonstrate a peculiar idiosyn-
cracy of the method based on second-degrec polynomials; more data

points 'yield a much worse result in this example.

Decision as to whether or not the proposed method is applicable
to a particular problem rests on each prospective user of the method.
The examples given here are expected to aid one in making such a
decision. Comparison of (d), (e), or (f) fitted by the proposed method
with (a) the original surface or (b) the piecewise-plane surface in cach
figure should be helpful for such a decision. Also, comparison of
figures 1 and 2 gives one some idea on the dependence of the resulting
surfaces upon the total number of data points and the complexity of

original surfaces.
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4. CONCLUDING REMARKS

We have described a method of bivariate interpolation and smooth

surface fitting that is applicable when z values are given at points irre-

gularly distributed in an x-y plane. For proper application of the
method, the following remarks seem pertinent:;

(i) The method does not smooth the data. In other words, the
resulting surface passes through all the given points if the
method is applied to smooth surface {itting. Therefore, the
method is applicable only when the precise z values are
given or when the errors are negligible.

(ii) As is true for any method of interpolation, the accuracy of
interpolation cannot be guaranteed, unless the method in
question has been checked in advance against precise values
or a functional form,.

(iii) The result of the method 1s invariant under a rotation of the
X -y coordinate system.

(iv) The method is limzar,‘ In other words, if z(xi,yi) -
az'(xi,yi) 4 bz"(xj,yi) for all i, the interpolated values
satisfy z(x,y) = az'(x,y) + bz"(x,y), where a and b are

arbitrary real constants.

(v) The method gives exact results when z(x,y) represents a
plane; i.e., z(x,y) = 350 + 2, 0% + agy Y where 350" 210°

. -
and a,, are arbitrary real constants,

01
(vi) The method requires only straightforward procedures. No

problem concerning computational stability or convergencc

exists in the application of the method.

A computer subprogram package that implements the proposed

method is described in Appendix B.

13
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APPENDIX A

INTERPOLATION IN A TRIANGLE

Assuming that the plane is divided into a number of triangles, we

describe a procedure for interpolating values of a function in cach tri-

angle,

The primary emphasis is on the smoothness of the interpolated

values not only inside of the triangle but also on the side of it; i.c.,

the interpolated values in a triangle must smoothly connect with those

values in an adjacent triangle on the common side of two triangles.

Basic Assumptions,

Using a two-dimensional Cartesian coordinate system with x and

y axes, we describe the basic assumptions as follows:

(1)

(i)

(1ii)

The value of the function at point (x,y) in a triangle is inter-

polated by a bivariate {ifth-degree polynomial in x and y; i.¢e.,

5 5-j LS
z(x,y) = E;qjkx:'&'h . (A-1)
j=0 -0

Note that therc are 21 coefficients to be determined.

The values of the function and its {irst-order and second-
order partial derivatives (i.e., z, Z» ?'Y' z zxy’ and
Y) are given at each vertex of the triangle. This assump-

“y
tion yields 18 independent conditions.

The partial derivative of the?unction differentiated in tl-u:*
direction perpendicular to each side of the triangle is a
polynomial of degree three, at most, in the variable meas -
ured in the direction of the side of the triangle. In other

words, when the coordinate system is transformed to another

Cartesian system, which we call the s-t system, in such a
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way that the s axis is parallel to each of the side of the
triangle, the bivariate polynomial in s and t representing

the z values must satisfy

ztssss:O' $4~2)

Since a triangle has three sides, this assumption yields

three additional conditions.
The purpose of the third assumption is two-fold. This assumption adds
three independent conditions to the 18 conditions dictated by the second
assumption and, thus, enables one to determine the 21 coefficients of
the polynomial. It also assures smoothness of interpolated values as

described in the following paragraph.

We will prove smoothness of the interpolated values and therefore
smoothness of the resulting surface along the side of the triangle. Since

the coordinate transformation between the x-y system and the s-t sys-

tem is linear, the values of Z, Zy' Bgr

and z at each vertex
xy’ Yy

uniquely determine the values of Zer Zgs Zoos Zgys and z,, at the same

tt
vertex, each of the latter as a linear combination of the former. Then,

58S

the z, zg» and z . values at two vertexes uniquely determine a fifth-
degree polynomial in s for z on the side between these vertexes. Since
two fifth degree polynomials in x and y repre senting z values in two
triangles that share the common side are reduced to fifth-degrec poly-
nomials in s on the side, these two polynomials in x and y coincide with
each other on the common side. This preves continuity of the in.te'rl,(,_
lated z values along a side of a triangle. Similarly, the values of 2,
and z g = (7.1)S at two vertexes uniquely determine a third-degree poly-
nomial in s for z, on the side. Since the polynomial representing z, is
assumed to be third degree at most with respect to s, two polynomials

represcnting z, in two triangles that share the common side also
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coincide with each other on the side. This proves continuity of 2, and

thus smoothness of z along the side of the triangle.

Coordinate System Associated With the Triangle,

We denote the vertexes of the triangle by Vl. VZ, and V3 in a
counter-clockwise order, and their respective coordinates in the X-y
‘Cartesian coordinate system by {xl,yl), (xz,yz), and (x3,y3}, as
shown in figure A-1(a). We introduce a new coordinate system asso-
ciated.with the triangle, where the vertexes are represented by (0,0),

(1,0), and (0,1) as shown in figure A-1(b). We call this new system

the u-v system.

The coordinate transformation between the X -y system and the

u-v system is represented by

X=au+bv+x

0 »
(A-3)
y=cu+dv +-V0-
where
a = xz - xl 2
b:x3 —xl ;
c= yZ - Yl »
(A-4)
4 = ¥ <Yy
Xg =X s i
YO = Y] .
The inverse relation is
u = [ d(x_xg) - b{Y_YO)]/(ad - bC) »
(A-5)

I

v

[-c(x—x0)4 a(y-yo)]/(ad - bc).

17
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The partial‘derivatives in the x-y system arce transforined to the

u-v system by

Z, = a2zy 4 CZy s

Zy = bz 5 dzY :

Zyy = al &g, * Zacz:wr + c‘.i ZYY , (A-6)
Zuv = abzxx + (ad + bc)‘.r.}()r 1 cdzyy :

2., = bz + 2bdz,, + dzzw.

Since this coordinate transformation is linear, the interpolating
polynomial (A-1) is transformed to
5 5-j

z(u, v) = Z P w v

k
b .
=0 k=0

(A-7)

Since it is the p coefficients that are determined directly, as shown
later, and are used for interpolating z values, it is unnecessary Lo re-

late the p coefficients to the q coefficients used in (A-1).

The partial derivatives of z(u,v) in the u-v system arc cxpressed

by
5 5-j y
- J=
cufor = 3 3 st
j=1 k=0
4 5+
z (v, v) = z E kPAkn:' el
J:O k=1 J
5 5-j ,
Zaalesv) = 25 D i(i=Dpy wl™2 vk, (A-8)
j=2 k-0 J
4 5-j . ;
i - -1 k-
zuv(u,v) = E Jkpjk ™ oy >
_j:] k=1
19
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3 5-j

: : i k=2
zvv(u,v) = Z };k(k—l)pjkw)v =

370

We denote the lengths of the unit vectors in the u-v system (i.«

the lengths of sides V,V, and V A ) by L, and L, respectively, and

the angle between the u and v axes by 6,,+ They are given by

.2 S5

lau = a +.c ’

L. = b2 4 0 (A-9)
i = tan"SG¥B) ~ tan"l(c/a)

uv ’

where a, b, ¢, and d are constants given in (A-4),

Implementation of the Third Assumption.

We represent the third assumption (A-2) in the u-v system and
derive useful equations for determining the coefficients of the polyno-
mial. We do this for three cases corresponding to the three sides of

the triangle.

First, we consider the case where the s axis is parallel to side

VIVZ' as shown in figure A-1(c). The coordinate transformation

between the u-v system and the s-t system is expressed by

u

[ (sin Buy) (8 -84) - (cos o, )(t —to)] /(Lusin auv) ,
| (A-10)

<
1"

(t-t,) /(L sin 6

uv) ¥

where Lu, LV, and ﬁuv are constants gi\?'én in (A-9). Partial deriva-

tives with respect to s and t are exnressed by

a__ 1 9
ds l‘u Au
(A-11)
cos
3 . "% 5 1y
at L, sin euv du L sin 0y av '’
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respectively. From (A-2); (A=7), and (A=11), we obtain

1 - 5L cosg B {in=12)
\ |

‘u P.; ] v i)5() L

Next, we consider the case where the s axis is parallel 1o side

VIVB' as shown in figure A-1(d). The coordinate transforination is

expressed by

u= = (t-tU)/{I,usin Huv) . '
(A-13)
v = [(sin 8,.,) (s~ .';“) # (cos 6,,,)(t> IU}] /(L\_r sing ).
Partial derivatives are expressed by
I
As Lo, av '
(A-14)
% o) 1 : j cos N
ot Lysing,, du  L_sinf,, dv
Then, from (A-2), (A-7), and (A-14), we obtain
val4 - 5L, cos ﬁuvposzﬂ. (A-15)

Next, we consider the third case where the s axis is parallel to

side \*’1\-'3, as shown in figure A-1(e). The coordinate transformation
[

is expressed by

u:A(s“sO)+ B(t-tO},

(A-16)
v:C(s—su)th(t-lO). §
where
A= sin(68,,-6,4)/(L,sin 850) o
B = - cos(6, - (Jus) / (L, sin ﬁuv) ;
C = sin Bus/(Lv.‘%inBuv) ; (A-17)
D = cos 8, f(L‘ sin b)),
21




f =tanhll{d-c)/(b-a)] -tan-l(c/a).

us
The §,, constant is the angle between the s and the u axes. The a, b,
¢, and d constants are given in (A-4), and Lu’ Lv' and 8uv are given

in (A-9). Partial derivatives with respect to s and t are expressed by

Q. _ »OBEE. 0
Tl - a4 Th
(A-18)
A O
at_Bau+D8v'

From (A-2), (A-7), and (A-18), we obtain
4 3 2 '
5A% Bpgg + A°(4BC+AD)p,, A“C(3BC+2AD)p,,

+ACZ(2BC+3AD)p,, +C3(BC+4AD)p , + 5c4D905 =0 .

- {A=19)

Equations (A-12), (A-15), and (A-19) are the results of imple -

mentation of the third assumption (A-2) in the u-v coordinate systemn.

They are used for determining the coefficients of the polynomial (A-7).

Determination of the Coefficients of the Polynomial.

Obviously, we can determine the coefficients of the lower-power
terms by letting u = 0 and v= 0 and by inserting the values of z, 2z,

e L , and z

= Vatvl(i.c., u=0andv - 0)in (A-7) and (A-8).

z
uu’ “uv \'4

The results are

-
Pgo = 2(0,0) .
plo = Zu(o,o) ¥
Pgp = 2v(0:0),
(A-20)
Pyp = zuu{0,0) I 2,

2

I~

g s 3 .
v ~ L
1§ 5 = 2 % z
ET T~ % " ' _Eg =
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- e -0 = v v gt =
e e | s £ YeREE =
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Py ° ;fuv{U,U) :

. [ P
Pgs = 2yypl0:0) /2 .

Next, letting u = 1 and v = 0 and inserting the values of Zy %

and 2y at VZ (i.e., u=land v = 0) in (A-7) and the first and the third

equations in (A-8), we obtain the following three equations:

. ; = o(1, 0} = 5 k
P3g * Pgot  Pgy = 2(1,0) Poo ~ P1o ~ Py ¢
5 =% | - - )
3Pyt 4Pyt P50 = Zu\le Bl =y o CPy0 »
2 2 20 = 1 -
6p30 + 1 pqU + 2( 1350 Zygy | ,0) ZPZU :

Solving these equations with respect to P30? Ps0? and p50. we obtain

= [202(1,0) - 8 i - B '
P3g = [202(1,0) - 82,(1,0) + 2 (1,0) €0Pgo = 12Py = 6p,41/2,
Pgo = = 152(1,0) + 72 (1,0) - Zau(1:0) + 15pgg + 8Py * 3 Poy »

= ._) } - ) - » - £ - )
PSO [1 z(1,0) 6zu{l,0)+zuu{l,0) IZIUU bPIO “P‘;UJX“)'
(A-21)

Since Poo? P1o and P,o @re already determined by (A-20),

culate p

we can cal-
30° P40, and Peo from (A-21),

Similarly, using the values of z, z, and z,, at V_z, (i.e., u -0

1) and working with (A-7) and the second and the last equations

in (A-8), we obtain

and v =

-

p03 = [20 _(,(0,1) 2 BZV(O;‘IJ + ZVV(O’J) ) “{OPU{] = 12p01 il 6I)Uél/i'

p04 - 152(0,1) + 72‘\'(0’” 5 z\’vto’”.+ HPOU t 81)01

t3pgs o
Pos = [12 z(0,1) - 62,(0,1) + z,,(0,1) - 12p00 - 6p01 - zpo,]/z.

~

(A-2¢

M~
—

23




With Pg and Pos determined, we can determine Py and Pla

from (A-12) and (A-15), respectively. The results are

5 L\r cos 0,
R ]
Pa1 B P50
(A-23)
5 Lu cos 8.
P)g Lo Pos -

Next, we use the values of z

vand B at Vz{l.c., u =1 and

v = 0) with the second and the fourth equations in (A-8) and obtain

1"

2y(1,0) = Py = Pyy " Pyy

1]

szl+3p31 Zuv(l'o)-l)11"4p4}'

Solving these equations, we obtain

"

p 32 (1,0)~2 (1,0)=Fp.; s2Ps 4 P
1 v uv 01 11 1
- 7 (a-24)

=5 o "
Py uzv(l,0)+uuv{l,0)+2p01+ Py 2p4l.

Similarly, using the values'of z  and Z v at V. (i.e.; u=10 and

u

3
v = 1) with the first and the fourth equations in (A-8), we obtain

= 32.(0,1) -2 (0,1)-3p. -2p, . +
==2z.(0,1)+ 2z 0,1)+ 2p 4 -2
Pl3 alle 1 ¥ B8, L F 8Py & Pyg = SRy
Equation (A-19) is rewritten as e
By Py 8y Pyy =y =
where
2
gl:f’& C{3 BC%:AD),
g, =AC (2BC+3AD), (A-27)
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<

h, = -5A" B -A3(4}+(;+Amp4

'50 ]

-c*(BC+4AD)p, - 5(:40})05,

with A, B, C, and D defined by (A-17). Frem the value of Zyy At Vz
and the last equation in (A-8), we obtain

p 2 + 1)32 : h2 ) (A-28)

2
where
h, = (1/2)2,,(1,0) - py, = Py, - (A=29)

Similarly, {rom the value of Zyy at V3 and the third cquation in (A-8),

we obtain

Pos * Pyg = hy s (A-30)
where
hy = (1/2)2,,(0,1) = p,y = p,, - (A-31)

Solving (A-26), (A-28), and (A-30) with respect to Pyoo p32, and Py

we obtain

Py = (8 h, +g,hy -h))(g) +g,),

P3, * 112_ B ' (A=32)
Pog == Ry “ Py

with 81r By h,, and h

1 by given by (A-27), (A-29), and (A-31).

-

3

Step-by-Step Description of the Procedure,

In summary, the coefficients of the polynomial are determined
by the following steps:
(i) Determine a, b, ¢, and d (coefficients for coordinate trans-

formation) trom (A-1).

J
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(ii) Calculate partial derivatives 2z, %o Zy0 %oy and 2z from
(A-6).
(iii) Calculate L, L, and 0, (constants associated with the u-v
coordinate system) from (A-9).
(iv) Calculate A, B, C, and D (cocfficients for another coordinate
transformation) from (A-17).
(v) Determine 18 cocfficients of the polynomial from (A-20),
(A~21), (A=22), (A-28)5 (A= 1), and (A-25) -~ in thi3 order.
(vi) Calculate By &) hl, h;." and h3 from (A-27), (A-29), and
(A-31).
(vii) Determine the remaining three coefficients from (A-32).
For a given point (x,y) in the triangle, one can interpolate the z
value by the following steps:
(i) Transform x and y tou and v by (A-5) with necessary coeffi-
cients given by (A-4).
(ii) Evaluate the polynomial for z(u, v) given in (A-T7).
Although some cquations look complicated, the procedure de-
scribed here is straightforward. It can casily be implemented as a
computer subroutine.
-
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APPENDIX B
COMPUTER SUBPROGRAM PACKAGE

User information and Fortran listings of the 1D BVIP/IDSFFT

~subprogram package are given in this appendix. This package imple-

ments the method of bivariate interpolation and smooth surface fitting

for irregularly distributed dat;, points, described in section 2 of this

report. It is written in ANSI Standard Fortran (ANSI, 1966).

The package consists of 4 block-data subprogram and the follow-

ing six subroutines; i.e. » IDBVIP, IDGEOM, IDI.CTN,

IDPDRYV,
IDPTIP, and IDSFFT.

Two subroutines, IDBVIP and IDSFFT,
master subroutines of the pack

are the
age, and each interfaces with the user.
The remaining four subroutines

ar¢ common supporting subroutines

The IDBVIP su broutine

variate interpolation for irregularly distributed d

called by IDBVIP and IDSFFT, performs bi-

ata points; it estimates
the z values at the specified points in the X-y plane. The IDSFFT sub-

routine performs smooth surface fitting; it cstimates the z values at the

specified rectangular grid points in the x-y plane and generates a

doubly-dimensioned array containing these estimated values,

The package includes three common blecks

I IDGM, IDNN,
and IDPI,

Including these common areas, the package occupies approx-

imately 3200 locations on the CDC-6600 computer.

s

When the user wishes to call cither IDBVIP or IDSFFT subroutine

repeatedly with identical data as parts of input data in two consecutive

calls, he can save computation times consider

ably by specifying an ap-
Propriate mode of computation. (This mode is specified with the MD

parameter in the call statements to be described later, )
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User information on 1DBVI}’ and that of IDSFF'I" will follow. 'T'his
information is followed by Fortran listings of the scven subprograms ---
six subroutines listed in alphabetical order, followed by the block-data

subprogram.

The IDBVIP Subroutine.

This subroutine performs bivariate interpolation when the pro-

jections of the data points in the x-y plane arc irregularly distributed

in the plane.
This subroutine is called by the following statement:
CALL IDBVIP(MD,NDPP, XD, YD, 2D, WK, NI, XI, YI, Z1)
In this call statement, the input parameters are

MD = mode of computation (imust be 1, 2, or 3),

1 for new XD-YD,
= 2 for old XD-YD, new XI-YI,

3 for old XD-YD, old XI-YI,

NDP = number of data pnint.s (must be 4 or greater),

XD = array of dimension NDP containing the x coordinates
of the data points,

YD = array of dimension NDP containing the y coordinates
of the data points,

ZD = array of dimension NDP containing the z coordinates-

-
of the data points,

WK = array of dimension (2% NDP+NNP+5)%“NDP + NIP
to be used internally as a work area,

NIP = number of points to be interpolated at (must be 1 or

greater),
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X1 = array of dimension NIP containing the x coordinates
of the points to be interpolated at,
YI -= array of dimension NIP containing the y coordinates

of the points to be interpolated at,

where NNP is the number of additional data points used for estimating

partial derivatives at each data point. The output parameter is

Z1 = array of dimension NIP, where the z coordinates

of the int&rpolaled points will be stored.

The LUN constant in the data initialization statement is the logical
unit number of the standard output unit and is, thereforc, system de-
pendent. The user must enter an appropriate number into LUN before

compiling this subroutine.

The value of NNP must be given through the IDNN common block.
NNP must be 2 or greater, but smaller than NDP. In the subprogram

package listed below, it is set Lo 4. The user can change it by declaring

COMMON/IDNN/NNP
in his calling program and by assigning a number of his choice to NNP

with an arithmetic assignment statement before the call to IDBVIP,

The call to this subroutine with MD = 2 must be preceded by an-
other call to this subroutine with the same NDP value and with the same
contents of the XD and YD arrays. The .all with MD = 3 must -be pre-
ceded by another call with the same‘I\'JDP and NIP values and witii the
same contents of the XD, YD, XI, and YI arrays. Between the call
with MD = 2 or 3 and its preceding call, the WK array should not be

disturbed.

Table B-1 (p. 32) shows the approximate computation times re-

quired on the CDC=-6600 computer.
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The IDSFFT Subroutine.

This subroutine performs smooth surface fitting when the pro-

jections of the data points in the x-y plane arc irregularly distributed

in the plane.

This subroutine is called by the following statcment:

CALL IDSFFT (MD,NDP,XD, YD, ZD, WK, NXI, NYI, XI, YI, ZI)

In this call statement, the input parameters are

MD

NDP
XD

YD

2D

WK

NXI

NYI

X1

Yl

E SENSING
tson, Editors

n

1"

1

1]

]

mode of computation (must be 1, 2, or 3),

1 for
2 for
3 for

new XD-YD,
old XD-YD, new XI-YI,
old XD-YD, old XI-YI,

number of data points (must be 4 or greater),

array
of the
array
of the
array

of the

array

of dimension NDP containing the x coordinates
data points,
of dimension NDP containing the y coordinates
data points,
of dimension NDP containing the z coordinates
data points,

of dimension (2% NDP+ NNP+5)% NDP+ NXI*NYI

to be used internally as a work area,

numbe
(must
numbe
(must
array
of the
array

of the

m Brazil: Tectonic control of
O held, Fisa A. Abbott,

'ala interpretation,

r of output grid points in the x coordinate
-
be 1 or greater),
r of output grid points in the y coordinate
be 1 or greater),
of dimension NXI containing the x coordinates

output grid points,

of dimension NYI containing the y coordinates

output grid points,
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4

:

where NNP is the number of additional data points used for estimating

partial derivatives at each data point. The output parameter is

Zil = doubly~-dimensioned array of dimension (NXI,NYI),
where the interpolated z values at the output grid

points will be stored.

¢ The LUN constant in the data initialiration statement is the logical
unit number of the standard output unit and is, therefore, system de-

pendent. The user must enter an appropriate number into LUN before

compiling this subroutine.
The value of NNP must be given through the IDNN common block.
NNP must be 2 or greater, but smaller than NDP. In the subprogram

package listed below, it is set to 4. The user can change it by dcclaring

COMMON/IDNN/NNP

in his calling program and by assigning a number of his choice to NNP
with an arithmetic assignment statement before the call to this sub-
routine.

The call to this subroutine with MD = 2 must be preceded by an-
other call to this subroutine with the same NDP value and with the same
contents of the XD and YD arrays. The call with MD = 3 must be pre-
ceded by another call with the same NDP, NXI, and NYI values and
with the same contents of the XD, YD, XI, and Yl arrays. Detwcen
the call with MD = 2 or 3 and its pMceding call, the WK arra-y ‘should
not be disturbed.

Table B-2 (p. 32) shows the approximate computation times re-

quired on the CDC-6600 computer.
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Table 13-1. Approximate computation times yequired for the

IDBVIEP subroutine on the CDC=-6600 computer.

e rwa T E

\ Time (scconds)

ND P \ NI *h##*F-TﬂrrdT_W
MD =] MD =2 MD =3
10 0,40 0.03 002
20 100 0, 50 0.12 0,06
1000 1.4 1.0 0L 35
0.04 0.03

10
30 100
1000

-

Py e =
-] un W
—
ch
=

10 6.6
50 100 6.8
1000 8.8

 © O

0.70

I~
™~

Table B-2. Approximate computation times required for the
IDSFFT subroutine on the CDC-6600 computer.

1

Time (scconds)

NDP NXI#NYI
MD =1 MD =2 MD =3

0 0.12 0.07
.70 0. 40
5.4 5 Io%
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20 33 %33
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o
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SUBROUT INF IDRVIRIMD NP s XD s YD ZN WK sNIP WX T oY 102 1)
THIS SUBROUTINE PERFORMS BIVARIATFE INTFRPOLATINN WHEN THF PRO-
JECTIONS OF THE DATA POINTS IN THiE X-Y P| ANE ARE IRREGULARLY
DISIRIBUTED IN THL PLANE.
THE INPUT PARAMETERS ARE

i = MODE OF COMPUTATION (MUST RE 1 2+« OR 21

= 1 FOR NEW XN-YD.
= P2 FOAR OLD XD=YDs MIW XI=YI]»
= 3 FOR OLD XD=YDsy OLD XI=Y1y
NDP = NUMHER OF DATA POINTS (MUST RF 4 DR ARFATER)»
xD = ARKRAY OF DIMENSION NDP STORING THF X €NORDINATLS

OF THE DATA POINTS»

YD = ARRAY OF DIMENSION NDP STORPING THF Y CNORDINATES
NnF THE DATA PNAINTS.

ID = ARRAY OF DIMENSLSION NNDP STORING THE 7 CNORDINATES
OF THE DATA PNINTS,

WK = ARRAY OF DIMENSION (2*NDP+NNP+&)%NDP+N|P
10 BE USED AS A WORK AREA

NIP = NUMBER OF INTERPOLATED POINTS
(ST BE 1 DR GREATERI »

X1 = ARRAY OF DIMENSION NIP STORIMAG THE X COORDINATFES
OF THE INTERPOLATED POINTS,

Y| = ARRAY OF DIMENSION NIP STORIMG THFE Y COORDINATES
OF THE INTERPOLATFD POINTS,

C WHERE NNP 15 THE NUMBER OF ADDITIONAL DATA POINTS USFD FOR

C ESTIMATING PARTIAL DERIVATIVES AT EACH DAlA POINT. THF VALUE

¢ OF NNP MUST BE GIVEN THROUGH THE IDNN COMMON, NNP MUST BRF 2

C OR GREATERs BUT SMALLER THAN NDP.

C THE OUTPUT PARAMETFR 15

C Z1 = ARRAY OF DIMENSION NIPs WHFRF THE I CDORDINATES

C OF THE INTERPOLATED POINTS ARF TO HBf DISPLAYED.

¢ THE LUN CONSTANT IN THE DATA INITIALTZATION STATFMENT 1S THE

C LOGICAL UNIT NUMBER OF THE STANDARD OUTPUT UNIT AND IS5

C THEREFOREs SYSTEv™ DEPEMDENT.

C DECLARATION STATEMENMTS

DIMENSION XDO10)+YDUINI 2 ZDE1IN) sy (100N ),

1 X1(010)»Y1010)+Z11(10)

COMMON/ IDNN/NNP

COMMON/Z IDGM/ZNDPC s NNPC o NT s NL

COMMON/IDPI/NCFWICF

EQUIVALENCE (FNDPO+NDPQO) s IFNDPPVNDPPV ) »

F\ﬂﬁﬁﬂﬁﬂﬂﬁﬁﬂﬁﬂﬁﬁﬁﬁﬁﬁﬁf\ﬁﬁ

1 LFNNPO +NNPD) » LENNPPV  NNPPV ),
2 [IFNIPOsNIPOD) s [FNIPPVNIPPV ),
k! (FNT+NT) s (FNLsNL )

DATA LUN/&/
C SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES. (ALL MD)

1N MDA=MD
NDPO=NDP
NDPC=NDPOD
NIPQ=NTD
NNPO=NNP
NNPC=NNPN

C ERRNR CHFCr. [(ALL ™MD)

20 IFIMDO.LT10R.MDD.GT .3 G0 TN 90
IFINDPD L Tak) GO 10 9N
IFINIPNL Tel) Gn TO 90
IFINNPNaLTa2«OR.NNPNJGELNDPN) GO TO 9N
1F (MDOWNF 1) onh 10 2.

21 WKL) )=FNDPN ’
WE (2 1eFNNPD
GO 10 24

22 FNDPPV=wWy (])
FNNPPV=wk (2]
IFINDPONF.NDPPV) GO TO 90
1F ENNPRLNF NNPPV) GOh 10 9n

33

111
TH1
181
IR
TR1
1001
160
TH 1
1]
11”1
181
111
IRl
IR1
1”1
1nl
TR
181
IH1
1RT
181
I8l
1R1
IR
(NER !
IR
1R1
IR1
111
IR1
181
181
IRl
181
IR1
IA1
181
IR]
IR]
IR1
IB1
IRl
181
1”1
IA1
IRI
IR1
IR1
IR1
1R1
181

“TR]

1Pl
IR1
IB1
181
181
I8l
A1
IRl
181
IR1
IR1
IRl
IRT

N0y
0w
N0~
Nha
nne
nog
N7
filype
nona
00
01
n12
0113
N4
015
N A
o017
O1R
019
n20
nz2l
022
023
nae
n2s
026
na21
028
nz29
N30
(13
032
033
034
nas
N6
037
nag
n3iQ
nan
0w
04?2
n&3
Na 4
045
[
na7
N&4A
049
n&n
0%]
n&?
nea
054
055
056
ns7
058
nse
060
NGkl
062
263
Ok4
n&s




JFIMNAGNS, ) GN IO 24 1H ] ey
?3 FNIPPV=wr (1) o] in?
IFENIPDHE «NIPDV) LN TN 9N 181 &P
GO Ty 3n IR] NkKa
24 WelAlefNIDA 1 KAL)
C ALLOCATION OF STORAGE ARFAS IN THr ¥r ARRAY. (AlL MD) 1Bl N7
21 NDNDM] =NnRA® (NDDALY ) 1y n17
IWiRT=? Nl n12
IWlP = IWIPT+MDNDM] IRy nrg
IwIPN= v ] P +NDMDOV) IR] NTE
IWPD = [WIDPN+NDPNPNNDA IRl N7
IWlT =|wWPD +NDPNeS IRy n17
€ DIVIDES THE X=Y PLANE INTO A NUMHFR OF TRIANGLFS AND IBI O7TB
C DETERMINLS NNP POINTS NEARFST FACH DATA POINT, (MD=]) IRl 0719
an J1FIMDGTL]) GO TO 42 IR NAnD
41 CALL IDOGFOMIXDaYDoWK LIWIPT ) oWk [ IWIPL ) oWK L [W]PN) ) IR] OR] ,
WEIS)I=FNT IR] OUH?
WE L6 )=FNL IR] 0OR3
GO Tn &n IRl OA&
42 FNT=wr (5) IRl nAs
FNL =w¥ (/) IR Oag
€ ESTIMATEYL PARTIAL DERIVATIVFS AT ALL NATA POINTS. (ALL MD) IRT ORY
50 CALL IDPDRVIXDsYDWZD WK I IWIPN) swv ( IWPDY) IH] Onrn
C LOCATES ALL INTERPOLATEN POINTS. IMP=142) A IBl nRna
60 JTFIMDN.EO.2) 6o 10 10 IRT nan
InlT=IWIT=]) b0
DO &1 11P=]sNIPD IRl o092
JWIT=JwlT+] IRl n93
CALL INLCTNIXDsYD oWK (IWIPT ) sWK I IWIPL )y IRT N94
1 XITLTIPIWYTLTIP)Y swWwk (WL T)) IR] na9s
A1 CONTINUIE IRT Nng
C INTERPOLATION OF THE 71 VALUES. (ALL mMD) IRT Na7
70 NCF =0 IRl On9A
ICF=0 IR1 nng *
JWIT=1wWIT=) IA1 100
bCc T 11P=1NIPO IR1 101
JWIT=Jw1T+) IRI 1N
CALL IDPTIPIXDyYDsZDyWKIIWIPT ) awr (IWIPL)sWELIWPD) » 181 103
1 WEKIJUWIT) e XILLIIP)IaYTILIIPYsZILTIIP)) IBI 104
71 CONTINUE IBI 105
C NORMAL ExIT IRI 106
An RETURN IRI 107
C ERROR EXIT IH1 108
90 WRITE (LUN»2090) MDOWNDPOWNIPUOsNNPD IB1 109
RETURN 181 110
€ FORMAT STATF“FNT FOR FRROR MESSAGF IRT 111
2090 FORMAT(1X/4]1H wes IMPROPER INPUT PARAMETFR VALUFEILS) ./ 181 112
1 ™ MD =+ J4 s 10X+5HNDP =+ 62 10X 5HNIP =4]fhs IRl 113
2 10X +SHNNP =316/ : IBT 114
3 35H ERROR DETECTED IN ROUTINE 1DBVIP/) 181 115
END IBI 11e ¢
-~ i
SUBROUTINE IDGFOMIXDsYDsIPTHIPL,IPN) IGM 00}
C THIS SUBROUTINE DIVIDFS THE X-Y PLANF INTO A NUMRER OF 1GM 0o
C TRIANGULAR ARFAS ACCORDING TO GIVFN DATA POINTS IN THF PLANE » IGM 0013
C DETERMINES LINE SEGMENTS THAT FORM THf RORDER OF DATA ARFA. 1GM 004
C DETERMINES THE TRIANGLE NUMBERS CORRESPONDING Tn THE RORDER IGM 00s
C LINE SEGMENTSs AND SELECTS SEVERAL DATA POINTS THAT ARE 1GM 00g &
C NEAREST TO EACH OF THE DATA POINIS. IGM 007
C AT COMPLETIONs POINT NUMBERS OF THF VFRTFXES OF FACH TRIANGLE IGM 008
C ARE LISTED COUNTER-CLOCKWISF. POINT NUMBERS OF THF FND POINTS IGM 009
C OF EACH BORDFR LINE SEGMENT ARF LISTFD COUNTER-CLOCKW]SE» IGM 010
C LISTING ORDER OF THE LINE SEGMFNTS RAFING COUNTER-CLOCKWISE . IGM 011
34
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NNANANANYNNANANATYANANNAANAAAN

THE INPUT PARAMETERS ARF
XDe¥D = ARRAYS STORING THE X AND ¥ COORDINATE Sy RISP.»
NF DATA POINTS.
THE OUTPUT PARAMETERS AR[
IPT = ARRAY OF DIMFNSION 3%NT, WHFRF THF POINT NUMRFRS
OF THE VERTEXES OF THF (1T)TH TRIANGLF ARF 10 Af
DISPLAYED AS THF (31 T=2)NDs (3*]1T-1)5T, AND
(38 ]TITH ELEMENTSs IT=192000usNTs
IPL = ARRAY OF DIMENS]ION A*NL s WHERE THF POINT NUMRFRSY
OF THE ENN POINTS OF THF (JL)TH PORNFR L INF
SEGMENT AND ITS RESPECT]VE TRIANGL E NUMBFR ARf
10 RE DISPLAYED AS THE (3#]L=2)NDs (3®]L=1)5T
AND (3%ILITH ELEMENTSs IL=192suees NLs
IPN = ARRAY OF DIMENSION NNPEMNP, WHFRE THF POINT
NUMBERS OF MNP DATA POINTS NFARPEST T FACH OF
THE NATA POINTS ARE 10 AF NISPLAYFD,
WHERE NDP 1S THE TOTAL NUMRFR OF DATA POINTSs NNP 1S TiHf
NUMBER OF DATA POINTS NEAREST 10 FACH DATA POINTs NL |5
THE NUMBLER OF BORDER LINL SEGMENTSs AND NT 15 THF NUMRER
OF TRIANGLES. NDP AND NNF ARE GIVEN 10 THIS SUBROUT INE
IHROUGH THE 1DGM COMMON. NL AND NT ARF CALCULATFD RY THIS
SUBROUTINE AND ARE LEFT IN THL IDGM COMMON AT COMPLETINN,
DECLARATION STATEMENTS
DIMENSION xnIIOl.YDr1n1.Tnlijon}.gaLt]Uum.gpNt5n1
COMMON/ INDGM/NDP (NNF G NT NL
EQUIVALENCE fDSO)-]DSU]I-lhbD?-IDSO?l-IDSOM-IDSOMI
PRELIMINARY PROCESSING
1n NDPO=NDP
NDPM] =NDPN-]
NNPO=NNP
NNPM] =NNP0-]
DETERMINES THF NEAREST NNP POINTS,
2n DO 29 IP1=1+NDPO
X1=XDt]IP1)
Yl=YD(IP])
JIMX=]P]*NNPO
JIMN= JIMX=NNPM]
DO 28  J1=J1MN, JlmMx
J2MX= )1~
IDMN=0
DO 27 IP2=1sNDPO
IF(IP2.EQ.1IP]) GO Tn 27
IF1J1.GTLU1MN) GO To 2?2
21 DSO1=(XDUIP2)-X1)®®24(YD(IPD)-Y])ns>
IPTIIPZ?-IDSQ]
GO To 23
22 1DSO1=1PT(1IP2)
23 IFI{IDMN.EQ.D) GO To 24
IFIDSQ1 «GE-NDSOMN) Gn Tn 27
24 IFLOIMNLAT . g2mx) GO TN 26
DO 25  J2=J1MN,JPMX
IFLIP2.EQ.IPNIUD)) Gn Th o7
25 CONT INUF
26 DSoMN=DSO1
IDMN= P2
217 CONTINUE
IPNT )] )= ] DMmy
28R CONT INUF
29 CONTINUF

C LISTS ALL THE POSSIBLE LINF SEGMENTS IN THE IPL ARRAY,

C
C

CALCULATES THF SQUARES QF THE LINE SEGMENT LENGTHSs AND STORE

THEM IN THE IPT ARRpavy,
in 1L=0
DO 32 IP1=]+NDDNM)
X1=XDt]1p])
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M
16
] 6w
1M
1GM
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16
16
oM
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10w
e
16v
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16M
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1GM
1GM
16M
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1GM
16M
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16m
1GM
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M

16w
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017
(]1r
019
Uzt
na1
022
uel
24
Nzsg
Nn2ea
nz7
e
ngna
nan
GER
03z
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nig
BER
DR
nan
ngn
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042
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050
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- S
. Yil=yD(1P)} L A K
IP1PY=1PY+) 1M nTpe
& PO 3] IP2x1PIPY 4 NDPO -
. IL=1L+1] 16y ORG
ILT2=1L+1L 1OoM Gk
. IPLIILT2=11=1P 1™ nas
IDL'II‘I?’ =|r’.1 v e
. DSQ1=(XDEIP2)I=X] ) ®enal¥YDLIPP)-v))oas 6™ OR4
1PTEIL M =1DSM | Ll
. 131 CONT INUIF [rv nag,
12 CONTINUFE 1™ ner
. NLO=]L 1GM NAP
C SORTS THE IPL AND IPT ARRAYS IN ASCENNING ORDFR OF THE LINE 1GM ura
. C SFOMENT L FENGTH (DISTANCED, 1™ nan
. 15 NLM]=Nln-) 1M nay
Do 37 TL1el oNg M IGm Giap .
. INSQY=1PTL]ILY) 1G» D01
ILM=1L1] 1GM Noy
. nseM=psnl IGM D9¢
TLZ2MN=11 141 IGM Nng
& DO 36 [L2=1L2MN+NLD 1G4 ng7
IDSNP=1PT(IL2) IGM DoR
&® IFIDSN24GEDSOM) Gh Tn 3g IGM 00q
ILM=]L? 16GM 100
o DSOM=D502 1GM 101
16 CONT INUE IGM 102
. IPT(ILr)y=]DSQ] IGM 1N7
. IPTUILI 1 =1DSOM 1GM 1Ng
IL1T2=10L1+11) IGM 105
. ILMT 2= LM+I LM 1GM 104
ITS=1PLtILIT2=-1) IGm 107
. IPLEILIT2=1)=IPLLILMT?2=]1]) 16 1NA
IPLOILMT2=11=1TS 1M 109
& 1TS=1PLLIL]T2) 16M 110 H
IPLEILIT2)=1PLEILMT2) IGM 111
[ ] IPLETLMT2) =115 6M 119
37 CONTINUF 6™ 112
. C ELIMINATES LINE SEGMENTS THAT CROSS OR LIE OVER SHORTER ONE. IGM 114
B 4n 1L0=] i 1GM 115
DO 46 ILI=2+NLD 16M 116
. TL1T2=1L1+1L IG™ 117
IPI1=IPL(IL1IT2-1) IG™M 118
. IP2=1PLLILYIT2) IGM 119
: Xl=xD(]pP]]} IGm 120
. X2=XD(]P2) 1IG™ 121
Yl=yDt1PY) 6™ 122
& Y2=YD(]P?) 16M 121
DX21=X2=-X] IGM 124
& DY21=Y2-Y) 1GM 125
DO 4% IL2=141L0 IGM 126
@ IL2T2=1L2+112 16M 127
IP3a=PLLIL2T2-1) - IGM 128
. IPa=IPLLIL?TZ) IGM 129
X3=Xpl1P3) 16M 130
. Xa=XN(]P4&) IGM 131
. Yi=Yn(]P3) IGM 132
Ya=YD(1P4) IGM 133
. DX43=X4~X3 I6M 134
DX&42=X4=X2 IGm 135
. DX41=X4=-X) I6GM 136 .
NX32=x3-X2 IGM 137
. DX31=x3-X] IGM 138
DY43=Y4-Y1 IGM 139
] DY&2= Ya4=Y2 IGM 140
. DY&1=Y4-Y] I6M 141
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nl
42
* &%
. 4t

45

50

51
52

3

54

&n

100008000080 000000000000000000000c00000OCVOCGCCEGROOGIOROOIOERERIOIOYTY

NY32=sv3i-y)

NY31=yi-Y]

IFLIPALNELIPY) GO 10 4)
IFIDY&1*DX21-NX4]1#DY21oNEaNen) GO TN 4&
JEIDX41#DX214DY614DY 21 ) LR LE WLt
IFLIP&.NELIPY) GN TO 42
IFIDY31%DX21=NX3119NDY2]1.NELON) 60 TO 45
IFINX21#0X214nY218nY)] ) LSsythiB ik
IFLIP3ILNELIP2) GN 10 43
IFIDY4L22DX21=-DXL2eDY2)NENN) 6O TO 45
IFIDX429NX214DY4290Y2])) 4 vbSau5
IFLIP&NELIP2) GO TO 44
IFIDY32%0X21-NX324NY21.NED0) GO 10O 45

IF(DX32#DX214NY324DY2]) GHvLS YL
TFUINY31®#DX21-DX31#NY2) )2 INYL1#DX21-DXG]1*DY21) oOFo0a)
GO TN 45

IF(IDY31#DX43-DX31oNY4F I ®(DYI2#NX&I-IXA20NY4L2) LT o0a0)
6N TN 4k
CONT INUF
ILN=1LD+)
ILoT2=1L0+1Ln
IPLITLNAT2=11=1P]
1P tiLnT2) =P

46 CONTINUF

NLO=ILD

C RE-SORTS THE IPL ARRAY IN ASCENDING ORNDFR OF ITS ELEMENTS.

NLT2=NLN+NLOD
NLM]1T2=N| T2-2
DO 54 IL1T2=2sNLMIT2,y7
ILMT2=11172
IPMI=1IPL (11 MT2-1)
1PU2=1PL (ILVMT2)
TL2T2M=11L 172472
DO 53 JL2T2=1L2T2MsNLT242
IP21=JPLIIL2T?2-1)
IP22=1PLLIL2T?)
IF(IPM1-1P2]) 534514152
IFLIPM2=1P22) 53453452
ILMT2=1L2T2
1PMI=]PR2]
IPM2= P22
CONT IMYF
IPLOILMT2=11=1PL(IL]1T2-1)
IPLLILMT?) =IPLUILLIT2)
IPLEILYT2=-10=]1PM)
IPLUILYT2)  =]PM2
CONTINUE

C DETERMINES TRIANGLES.

1T=0

NLM] =Nl n=]

NLM2=NL n=7 -
DO 67 IL1=1s+NLM?

IL1T2=11L1+11Y

IP1=IPLLILYIT2-1)

IP2=1PL(IL1T2)

TLIPI=IL1+]

DD &5 IL2=11L1P) oM
ILa2Tz2=10L2+1L>?
TFUIPLLIL2T2-1).NF.1PY) GO Tn A7
IPA=1PLIILD2TD)

IL2P1=1L2+]
DN 62 IL3I=1L2P) NN
TLAT2=1L3+] 3

TFOIPLOILAT?2=11=-1P2) 62+6) 466
IFCIPLUIL3T2Y ~1p73) 62+6348
37

16y
1412
[ Eyre
10>
G
160
16M™
[
1M
16
IREL
1Giv
| v
10y
16
I "’_ll
1M
]G
| G
| (i
16w
| M
| (e
[ Gm
ltym
1GM
| e
Ir.”
1Gm
1Gm
J e
16n
1 ¢4
1GM
1GM
16GM
I6M
I1GM
16M
1GMm
] 0y
1GM
oM
I1GM™
1GM
1nM
1GMm
1GM
1GM
1AM
1M
1GwM
16GM
1Gw™
1GM™
1 6GM
16M
IGw™
16GM™
oM
1G™
1OM
G
1 6M

L

142
143
1414,
145
146
167
14R
160
180
161
152
181
] 54
154
146
157
158
1689
160
161
12
](lq
1ha
165
166
167
1AR
1649
170
171
112
172"
174
B
174
177
178
179
180
1R1
1R2
1R13
1R4
1A%
1864
187
188
1R9
190
191
197
193
194
195
1964
197
198
199
210
2M
202
203
204
205
206

'



A2 CONT INUE 16M 2007
GO ]n {1+] ||",u ’J,-|.
63 IPT1=1P1 16 200
1PT2=1P2 oM 210
IPT3=1P3 16M 27
IFltYD|Ip‘3J-TDiIPlJII'Ilhf!PT?1-ID{|P1]I}- IGM 212
1 IXDIIDT\!-‘DIIDT]}j‘[YﬂI]PT?J—YHIIPTlll.GF.U.ﬂl IGM 211
2 G 10 &6 I6G™ 2714
1TS=1PT2 16™ 215
1eT2=P11a 16M D¢
1IPT3=)T75% 16M™ 217
Al X1=XND(IPT)) 16w 210
X2=Xn(IPT2) 1oV 219
X3=xDI1PT3) 16GM 220
Yl=YDILIPT]) 1w 221
Y2=YNnILIPT2) o™ 227
Y3i=syYn([IPT3) IGY 2213
NX32ex3-x2 IV 224
NX21=x2-x1 oM 255
DX13=X1-X13 IGM 226
NY32=Y3=-Y? 1G™ 227
NnY2l=y2-Y1 ) 1GM 229
NY13=Y]1-Y3 16 229
DO 65 IPO=1.NDPD 16M 230
JFUIPOEQeIPTIaORMIPNIN.IPT? AP IP0ENIPT3) 1I6GM 23
1 GO TN g5 1GM 232
Xn=xXDlIPQO) 1M 231
Yo=YDLIPN) IGM 234
IFLEYO=-Y)1)#DX2 1= (X0=X]1)#DY2 1.1 T.U,0) GO TO &% IGM 2135
JELIYO=Y2Z2)#0nX32=(X0=-X2)*0DY22, 1 T.0.0) GO TO 6% IGM 236
IFLIYO=Y3)®nNX13-(X0-X3)*NY)2,Gf.0.0) GO TO &6 16M 237
65 CONTINUE IGM 238
IT=1T4] I6GM 239
ITT3=17+3 I6GM 240 .
IPTLITT3-2)=]PT] 16w 24
IPTLITT3=1)=IPT) 1I6M 242
1PTILITTA) =IPTa 1GVM 241
66 CONT INUF 1G™ 244
67 CONTINUE . 1GM 245
NT\"I"T 16GM 24¢
NT1=NTQ 16M 247
C SELECTS AND SORTS LINE SEGMFNTS THAT FoRM THE RORDFR. 1GM 248
T0 1LO=D IGM 240
DO 75 ILYI=1sNLD IGM 280
IL1T2=1L1+111 IGM 28]
IP1=IPLLILIT2=-1) 16M 252
IPZ=1PLITILIT?) InM 2817
Xl=xDt1P]) 1GMm 254
Yl=¥DI(]P]) y I6m ?285%
X2=Xp(1p2) 1GM 254
YZ2uYDLIP2) 1GM 287
DX21=X2-X] = IGM 258 |
NY21=y2-Y1 1GM 259
DO 71 [PO=]1+NDPO I6GM 260
IFLIPN.EQ«IP1.OR.IPNLFR.IP2) ( N7} N IGM 261
S=(YDUIPO)=Y1)#DX21-(XDI PO)=X]) 1721 IGM 262
IFIS.NFeD.N) Gh 10 72 IGM 263
Tl COMT I NUE 1GM 284
72 IPNMN= [DA+] IGM 265
oo 73 1PO=POMNNDPD IGM 266
IFUIPN.EQ.IP1.0R.IPD.EQ.1PD) GO 10 73 IGM 287 .
IFIIiYDiIPGI-*II'Dx?1~lXDiIPOI—XJF'DYZIJ'S-LT.O.OI IGM 268
1 GO T0 75 IGM 289
73 CONT INUE 1G» 270
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ILO=11L0+)

ILOT2=11ne1LD

TFISaLTanan) 60 Tn 74

IPLEILOT2=-1)1=1P)

IPLEILOT2) =]P2

GO TN 7%

T4 IPLIILOT2=1)=1P?

IPLUILOTZ2)  =21p)

75 CONTINUE

NLO=]LO

NLM]l=NLN=-

Do 79 TL1=2sNL M)
ILIT2=11+1L)
IP2=1PLILIL1IT2=-2)
lFthLtlLlTZ—ll.Eo.lb?l GNh T 79
IL1el=111+]

DO 77 IL2=IL1P)+NLOD
1L2T2=1L2+1L2
lFerttIL?Tz—ll.Eo-lDQ! GO To 78

i CONT INUF
78 IP1=1PLIILIT?2-1)

[P2=1IPLIILIT2)

IPLIILIYP—11=!°LtIL?T?-!J

IPLOTLIT2) =100 01LpT2)

IPLUIL2T2=-11=1P1

IPLUIL2T2) =1p)

79 CONTINUE

NL=NLD

C FINDS OUT TRIANGLES CORRESPONDING TO THE HORDER ( INF
€ SFGMENTS.

AN AN

Bn NLPl=M_Nne]

DO 83  1UR=1.NnLA
IL=NLP]=ILR
ILT2=]L+10L
ILTA= L T2+1L
IPLI‘TDLIILT?“ll
IPL2Z=1PLILT2)

DO 81 ITuw]lsNTD
ITT3=[Te3
Iﬂ7]tlp1fIT73—?]
IPT?-[PTIITT?—]I
IDTB-IPTEITTZI

GO To 81
IFlIPL?-EO.]PTI-OR-IPL?.FO.IPT?.OR-IPLF-EO-IPT31

Go To 82

1

1
8l CONT INUF
B2 IPLIILT3-2)=1PL)
IPLIILT3=-1)=]PL
IPLEILT3) =17
B3 CONTINUE
RETURN i
END

SUBROUT INF IDLCTNIXD-YH-IPTtIPL-KIIoYIl'ITI?
THIS SUBROUT INF LOCATES A POINT leFas DETERVMINES WHAT
TRIANGLE A GIVEN POINT (XTI+YI1) RELONGS T0. WHEN THF GIVEN
POINT DOFS NOT LIE INSINE THE DATA ARFa, THIS SURROUT INE
DETERMINES THF BORNER LINF SEGMFNT IN THE AREA AROVFE WHICH THE
POINT LIFS» DR TwO RORNDFR LINF SFAMENTS RETWEFN TWO ARFAS
AROVF WHICH THF POINT LTES.
THE INPUT PARAMETERS aRfF

39

G 271
[t a9y
6% 274
1G¥ 274
1GM 275
16M 276
IGr 277
1G6M 27p
G 270
16 2R0
IG» 28R
It 282
o~ 281
16 2Ry
IGM 2R
16~ 286
I16M 287
IGM 288
IG» 72R0
1Gv 200
1G6m 291
IGv 2q2
IGM 019
1GM 204
IGM 295
IGM 29¢
Inv 207
IGm 20R
IGM 299
16 300
IGMm ang
16w 303
1AM ana
16 304
IGM 305
IGM 304
IGe 307
IGM 208
IG™ 309
I6™ 310
16M 21
IGM 312
IGM 3113
16M 31
IGM 1315
IGM 31¢
IGM 317
IGM 318
IGM 319
IGM 320
1M 32)
IGM 322
IGM 321

ILC 001
ILC 002
ILC 003
ILC NOg
ILC 00s
ILC NDg
ILc nny
ILC nNg




l.....................................................d

r XDs YD = ARRAYS SINRING THE ¥ AND ¥ CORROINATE S, lrfige Tt
c NF DATA PNINTS, LR AR
C IPT = ARRAY STORING Tul POINT NUSMRIRSG OF 1 VIRTEYF S A I
r NF THE TRIANAGL © 5, 1 Ll
C IPL = ARRAY STORING THF POTNT NUMAFPRPS oF T fFuD I nya
C POINTS OF THF HORDER LINE S AMENTS ANE THF IR e nyy
C RESPECTIVE TRIANGLE NUMAERS, e nyg
C X11aYI1l = X AND Y CONRNDINATES, RESP . s OF ILC QY4
r INTERPOLATEND POIMT, O g B
€ THE QUTPUT PARAMFITR 15 ILEC N1y
c ITI = TRIANGLE NUMRFRs WHEN THF PrINT IS INSIDF THr ILC Mo
C DATA ARFA. NP IHHeC npn
C Twn BORDFR LINL SEGMINT NUMBIRS . ILY AND L2, ILC
C CODED TO TLY®(NT+NL)#1L >y WHEN THF PAINT 14 ILe npa
C DUTSIDE THF DATA ARFA. WHFRF NT 1S THF NUMAF E OF ILC Qpa
C TRIANGLES AND NL+ THAT NOF RORDFR L INF SFOMFNTS. ILC D24
C DFCLARATINM STATFMENTS ILE noe
DIMENS 1 ON XDEI0)+YDOI0) S IPTLION) yIPLLTON) ILC Npep
COMMON/Z IDGM/NDP o NND o N T o NL e nay
DATA NTPV/O/sNILPV/n/ ILe noe
C PRELIMINARY PROCESSING ILe nz%
In NTo=NT ILC nan
NLO=NL ILC 071
NTL=NTD+NLD ILC 032
Xn=x11 ILC 033
Yn=Y1| ILC D3
€ CHECKX IF IN THF SAMF TRIAMGLF AS PREY A ILC nas
20 IFINTR.NF.NTPY) 60 TO 315 ILC N3
TFINLNWNF «NLPV) GO TO as ILC nav
1To=1T1pv ILC 038
IFLITN.GTANTN) GN 1D »s s ILC nao
1T0T3=11n=3 ILC nun
IP1=IPT(ITNT3=-2) ILC Na)
1P2=IPT(]1TnTa=-)) ILC 04
IP3=1PTITTINT3) ILC Nua
Xl=xDpt(lIP1) ILC Due
X2=Xni1Pp) ILC s
Xa=xnlIpay ILC Duas
Yl=YD{IP1) ILC Nuy
Y2=¥YDL1P)) ILC nur
Y3=¥YD(IP3) ILC 0u9
TFOIYD=Y1 )12 UX2-x1)1-(X0-X1)®(Y2=Y])) 50421421 ILC 0%0
21 TFLAYD=-Y2)#(X3-X2)=(X0=-X2)*[Y3-¥2]) 50022422 ILC 04
22 1Fltvn—val'lewtiz—txn-xaltiv]-va:: S0+804+80 ILC 057
€ CHECK IF ON THF SAME RORDFR LINF CFGMENT ILC n%3
25 ILI=1TR/NTL ILC n&%4
ILZ=1TOo-TL1*NTL ILC 055
IL1T3=]1e3 i ILC nsa
IPI=]PLITLIT3-7) ILC 087
IP2=lPL(1L)1T3-1) ILC nsA
X1=xptIpy, ILC nsQ
X2=XD(1P7) - 1ILC 0k0
Yl=YD(]Ipy) 1LC 06)
Y2=YD(1IP2) ILC 042
DX02=x0-Xx? ILC 083
DYD2=YD-Y2 ILC 064
DX21=X2-x1] ILC Dgs
DY21=Y2-Y]) 1LC 086
C50221=NXNZ*DX21+NYN2%DY 7] ILC 0&7
TFECIL?2sNFLILY) GO TO an ILC ngnr
1IFICSn?22)) 26326050 ILC 069
26 DX0l=x0-Xx1 ILC 070
DYOl=Y0D-Y1 ILc omn
IFIDYN1eDX21-DXN1*DY21) 27+27+50 ILc n12
27 IFIDXQ1eDX21+DY01eDY21) 50+80480 ILc 073
40
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C CHECK IF BETWFFEN THF SAME TWO ROPAFR

an IFICSD221) 5043147
3 PL2T3=1 22
1PA=PL(112T3~1)
X3=eXn( [P
Ya=yYDY Ipay
DX32=ex3-Xx72
DY32aY3-v>

IFlenQ-nxizfnvn?'DY321 BOsROW&N

LINF

C WHEN CALLED WITH A MFw SET nF NT anD wt

1% NIPV=MTQ
MLPV=N A
I1TIPV=n
C LNCATIDN INMSINDE THF NATA ARFA
Sn I'TnT3=n
DO 69 [Tn=1sNTD
1TOT3=1TnT3+¢9
IF[ITn.E‘O-ITI‘I"VJ GO 1O a9
IPl-InTlITDI1-2I
IP2=IDTtIIOT3—l)
IP3=IPT(ITAT3)

Xl=xn(107])

X2=xDlp2)

X3=xD(1P3)

IFixX0-x1) 53+5545]
51 IF(X0=-%2} 55455,52
52 IF(X0-x3) 55158,49
53 IFiX0-x2) SG155,55
54 IFIX0-Xx13) 69+55,55

55 Yl=YD([IP1)
Y2=YD([p2)
Yi=YDiIP2)

IFtYn-v)} SR AN 56
56 IFtYp=-Y2) 6006057
57 IFtYo-ya) AOsRNsKO
58 IFlYn=-Y2) 59+6Nn,60
59 IFtYp=-y3) 69:s6n460
&n lFtlvn—vll'tx?-xll-txo-xlI-tv?~vilI

6] IFii‘fn—Y?"l!B-KZI-tID‘-I?!'IYJ-Y?II
62 lFl{Yn-—YEl'lll—!3}—{XQ-XBI'IYI—Y‘QI]

69 CONTINUE
C LOCATION QUTSIDE THE NATA AREA
TN NLOT3=NLOD®2
IP1=IPLINLOT3-2)
IP2=1PLINLOTI-1)
X1=XDlIPY])
Yl=YDl1lP])
X2=XD(1p2)
Y2=YDL P2y
NPXN2=xn-x7
DYD2=yn-Y>
DX21=x2-x1
DY21=Y2_¥)
Csazzl-0xn2'0x21+nvn2-DY21
DO 74 ILn=l.NLn
X)l=x2
Yl=Y?
DXNl=nxn?2
DY01=nyYn2
IP2=lPLI3%]L0-1)
X2=xD(1P2)
Y2=¥YD(P2)
DXN2=xn-x2
DYN2=Yn-Yp

41

SFOEMENT S,

69461461
69482442
69-80.80

Iec
Iee
ILC
ILc
ILC
ILC
ILc
ILc
c
e
ILC

t 1,
P T
b
T
170
n1a
Dal)
nA
ne>s
fp=
GRG
nAe
nag
ray
nApp
(pg
0nqn
o
nnz?
naa
oy,
noec
nag
nOY
fiog
ngg
100
107
102
103
104
10e
176
107
10R
109
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112
113
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NX21=x2-x1 ILEC 1=2»
NY21=Y2-Y1 ILc 120
C5PV=(C5022]) ILc 1at
CSN221=NX02*DX21+DYN2*DY? ILC 140
IFIcsn221) TleT1074 ILC 147
71 IFIDXN]1*DX21+DY0D1oDY21) T3IvT2+72 ILC 147
72 IFIDYN1*DX21-DX01®DY2]1) ThryTh T4 ILC as
73 IFlcSPV) TLsTLsTS ILC 145
T4 CONTINUE ILC 14k
ILn=1 ILC. 167
75 1Tn=1LN-) ILC Y4B
IFLITn.EN.n! 1TO=NLD ILC 149
GO Tn TT ! IL( 1:!”
76 170=1L0 e 18]
77 1To=1To#NTL+ILN ILC 152
NORMAL EXIT 5 JLC )53
An 1T1=1T0 LG 1%a
1TIPV=]1TN ILC Y&k
RETURN ILC 154
END e y=»
SUBROUT INF IDPDRVIXDy YD oINs IPNWPD) IPD LU}
THIS SUBROUTINE ESTIMATES PARTIAL DERIVATIVES OF THE FIRST AND 1PD 002
SECOND ORDER AT THE DATA POINTS. I1PD 002
THE INPUT PARAMETERS ARF 1PD 004
XDsYDsZD = ARRAYS STORING THF X» Y. AND 2 COORDINATES, 1PD D05
RESP«s OF DATA POINTS, 1PD N0Og
IPN = ARRAY STORING THF POINT NUMRFRES OF NNP NDATA 1PD NN
POINTS NFARFST TN FACH NF THF DATA POINTS, IPD NOR
WHERE NNP 15 THE NUMBER OF DATA POINTS USED FOR FSTIMATION IPD 009
OF PARTIAL DERIVATIVES AT FACH DATA POINT. NNP [5 GIVEN IPD 010
THROUGH THE I1DGM COwMNN, IPD N1
THE OUTPUT PARAMFTIFR 1S PN N2
PD = ARRAY CF DIMENSINN 5#*NDP, WHFRF THE ESTIMATED IPD 011
IXs 2Ys ZXXs 2XYs AND ZYY VALUFS aT THF DaAla 1PD 014
POINTS ARE TO BF DISPLAYED,: : IPD N1s
WHERE NDP 1S THE TOTAL NUMBER OF DATA POINTS. NODP IS GIVEN IPD O)¢
THROUGH THE IDGM COMMNON, IPD 017
DFCLARATION STATEMENTS IPD O1R
DIMENS]ON XDU10)+YDIINI4ZDII0O) S IPNIION) WPNISO) 1PD 019
COMMON/ IDGM/NDP yNNP o NT o NL IPD 020
REAL NMX s NMY s NMZ s NMX X s NUXY s MV Y X ANV Y Y 1PD 0721
PRELIMINARY PROCESSINA IPD 022
1n NDPO=NDP IPD N21
NNPD=NNP IPD 024
NNPM] =NNPO~] 1PD 025
ESTIMATION OF ZX AND 2Y IPD 026
20 JPDO=-5% IPD 027
JIPNOD==NNPD g IPD 028"
DO 24 1PN=1s+NDPO IPD 02¢
JPDN=JpDN+5 1PD 02N
X0=xDt 1e0) 1PD N1
YO=YD(]Pn) I1PD 032
Z0=2ZD(1PD! 1PD 031
NMX=0,.0 1PD 034
NMY=N,0N IPD 03%
NMZ =0 N IPD N3¢
JIPND=_JIPNA+NNPD 1PD N37
PO 23 IN1=1.NNPM] IPD 0138
JIPN=JIPNN+IN) 1PD n139
IPI=IPNIJIPN) IPD 040
DX1=xXD(IPI}=-X0 IPD 04)
42
g g ! : - . 3
T T 2 = 2 333 2 ok
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DYl=ynlIPI)=vn

DZ1=ZptiIp1)-20

IN2MN= INT+)

DN 22  IN2=IN?mMN . NNDD
JIPN=JIPNA+ N2
IPI=IPN(JIPN)
DX2=XD(IP])=Xn
DY?2=YD(IPI)=vn
DZ2=2D(IP])=72n
DNMI-DY]‘DZ?—DZIODY?
DNHY-DZ]-DXE-Dx]vDZQ
DNMZ-DXI'DY?-DYJoDx;
IFINNMZ .6iFun,n) 60 Tn 2
Nhvy s —Nyuy
NNV Y s Ny
DNMZ =~DNM7

21 NMX = NMX + DM x
NMY=NMY+DNuY
NMZ =NMZ +nNMy
22 CONT INUE
23 CONT INUFE
PDUJPDN4] ) =aNMX /NMY
DD[JPDU+?I=—NwaNuz
24 CONTINUE
C ESTIMATION OF ZXXx, Zxy, AND ZYY
AN JPDOa-5
JIPNA=-NNDA
DO 34 [pPn=1,.NpPA
JPDO=JPDn+%
X0=xp(1pn)
YO=Yni1pn)
IXD=PD(JPDN+] )
ZYD=PD( UPDO 4 )
NMXX=n,n
NMXY=n,n
NMYX=n,n
NMYY=n,n
NMZ =n.n
JIPRN=J1PNN+NNPD
DO 33 IN1=1,NNPM)

JIPN-J!PNO+IN]

IPl=1pN(JlPN)

DX1=xDIl1P])=X0

DY1=YptIPI)-YD

JPD=s#(1p1-1)

DIX1=PD(JUPN+1)=2Xn

DZY]-PDIJPD+2]—ZYO

INZMN=INT +]

DO 32 IN?-!N?MN‘NNDO
JIPN-JIPNnolN?
IPI=IPN(JIPN) -
DX2=xDl o] )=-xq
DY?-YD[IDII—Yﬁ
JPD=&® ([p[-1)
DZx2=PD(JPD+1)-7x%0
DZY2=PD(UPD+2)-7Y0D
DNHxx-DY1-DZI?—DZ:]!DY?
DNMXY-DZXI'hx?nhxl‘DZKE
DNNY!-DY1002Y2—DZY1«Dv9
DNMY?-DZY]'nxz—nxliozYz
DNMZ =DX)epY2 -DY1lepx?
DNMX X = - X X
DNMXY = —DymX Y

43

1P 042
Irn an
Irn Oae
IPn nas
1PD Paes
1PN ng Y
IPD ng4p
I°PD nua
IPD nsn
1PD 08
IPD ngp
1ep nea
'pr. n;.l-_‘
1PN nge,
'pl‘\ n:(‘
[PN Nne>y
IPD n&R
IPD nNsg
1PN ng0
Ien 061
IPD 067
1PN Nga
1PN 0kg
IPD Ngs
1PN D&k
Inn ngy
IPY ngp
1PN agn
IPD 070
IPD 07
10 0712
IPD n7a
1D 074
1PN 0718
1PD D7g
IPD 077
1PN N7A
IPD 079
1PO ngn
IPD nA)
PN nNas
I1PD NRA
IPD DR4
1PN NRs
IPD NnRg
IPD 0R7Y
IPD nBBe
IPD 0B9
IPD nap
1PN naojy

1o0n ney

IPD naoa

IPD D9

1PN nNnasg

IPD nog

IPD nNo7

IPD 0o9n

IPD n9g

IPD 100

IPD 10

IPD 102

IPD 109

1D 104

IPDh 10¢
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ICS

c

c
C
C
C
c
C
G
c
C
C
C
C
c
c
¢
c

2]

NNeeY X = = [INMY X
NMUeY Yz =Nrvyy
DNMZ ==/

NMX X=NMXX+DNMX X
NMXY=NMXY+DHNMX Y
NMYX=NMY X4 DNMY X

10

pher

g
1Pn
10N

'
ri

1
i

!
1
1
1
]
1

12N 111
NMYY=NMYYaayMyy IPH 117
MNM7 =NM7 +NiNw7 IfD 112
1?2 CONT INUE 1PN 114
213 CONT INUF 1PN 1
PDIIPDA+ ) s—rivax x s 18R Y14
PDIJPDN 44 ) == (NMXY&NUYX) /12 NNy ) 2 1 T
PDIUPDN+S ) s—NMYY /NM7 1PD 11p
AW CONT IMUFE IPD 119
RETURN IPD 129
END en 121
SUBROUT INF 1n°11nrxo-vn.zn-1n1-lpl-Pnn-llr-XII-Yrr-?r:! IP] 001
€ THIS SURROUTINF PFRFORMS PUNCTUAL INTFRPOLATICN OF FXTRAPO- IP1 no2
C LATIONs luFes DETFRMINFS ThF 2 VALUT AT A POINT, 1P DO3
THE INPUT PARAMEIFPS ARF IP1 nne
XDsYDs2D = ARRAYS STORING THF X Yo AND 2 COORDINATES, P 00
RESP.s OF DATA PDINTS, IPI Ouy,
IPT = ARRAY STORING THF POINT NUMRFRS OF THi VERTFXE S IP] ohO~
OF THE TRIANGLES IP] npR
IPL = ARRAY STORING THF POINT NUMRFRS OF THF [ND 1P1 nnn
POINTS OF THE HORDER LINE SEGMFENTS AND THO IR IP] Cln
RESPECTIVE TRIANGLF NUMRERS, Ir1 a1
PDD = ARRAY STORING THE PARTIAL NFRIVATIVES AT Tyr 1P n1>
DATA POINTS, 1Pl AYa
ITl] = TRIANGLE NUMHER NF 1HE TRIANGLE IN WHICH IPI O)a
THE INTERPOLATED POINT | IFS, Iy oy
XITyY1l = X AND ¥ CNORDINATESy RFSP,., NF IPI 014
INTERPPOL ATED PNINT, P11 N7
THE OUTPIIT PARAMETER 15 1P Myp
211 = INTFRPOLATFD 2 VALUF. IP1 N1o
DFCLARATION STATFMENTS 1M n2n
DIMENS | ON XDIIOI-YD(10!.?ﬂilﬂl.191[]00lolplIIOHI.FHHISOJ PT 021
COMMON/ INGM/NDP JNNP  NT +NL IPI 022
COMMON/ZIDPI /NCF L ICF IPl O272
DIMENS I ON CFnt27) IPI 024
EQUIVALENCE (X0sCFOU1))s (YOsCFOI2))s APV CFOL3)), 1P] 02¢%
1 [BPACFNI4)) s (CPWCFNIS) Y s (NP CFOLE) ) o IP1 026
2 (PONOSCFOITI) s (PIDWCFALAY )« IP20.CFO(Q)y, IP1 027
3 {PBOoCFDllnIl.ID&Oo(FPIl]l}otDSU-(EOil?ll; IP1 028
& tPn)-(Fﬂil?l}ulPl}o(FnilhllolP?lo(FOilﬂilo IP1 029
5 tP31;(FntlhlJ-tphlutrntlTll-iPO?.CFOI]HIIo IP1 030
& {Pl?-CFot]Q:1.(9;?-(Fnr?01}-lnﬁ?-cfntrllic IP1 03)
T lPOB.(FnIZ?}l.lPl?-(FﬁI??}I-#F?B-Cr0t2ﬁllo IPI" 037
B lPOﬁl(FOl?ﬁllu(D]&o(Fnt?ﬁllo(DOS-CFDf??}I IPI 0313
DIMENSTON CFLQg80) _ 1P] 034
DIMENSION X12)eYU3)0+203)4Ppl]5)s 1P1 035
1 ZUT3)42VI3)42U0UL3)42UVI3)e2VVIT) IP1 03¢
EQUIVALFNCF LITOSFLITON W1 TUsFLET ) 1P1 037
REAL LUSLVsLUSNUV s LVSNLIV IP1 0138
EQUIVALENCE (Ps.p0S) 1Pl N3
DATA NCFMX/ag/ IP] ngn
C SFTTING OF SNME LOCAL VAR]ARLES. IPl 04
in 1To=171] 1Pl 042
AlD=X]] IP] 043
Ylo=Y1] IPI Dua
NTL=NT+NL IP1 Ou4s
44
S s s
w, o o & oI . :
A E = g w2 <
— terag 35 Ty [ A -
Sh R Els & S £ -
T Y i B seCES £
S5 pERvs = & v3GES : :
oy S & b § - = VS8 -z B
. e £ = 2y o o = " ~ k i = = P
§ Wi WESo¥c. 2 ¥ < EXTE E T <
@ $ 5+ S« 8xSEy3E £ TTEs ... : :
Z B Y. HEs TP .- [ - = ~Sgw" E £ =
-0 = = g L,gg i E Pl — Eea5aAS ot € 3
w= S 449 pnF L EcH s SEZ ng & £ z
zZ3 = Soapleel BN S TR S > I us e = e =
o, B lm= B o6 6 S8 § = ~cdwed z < £
5 g = @ L RiSTcrE « cEzis g :
ung = =0 R R g .. SES RS T = o
- ° e P w =Ll - ] G PR < g =
c), L == Sty b ISR = = - et | — -

-______._._.uﬂ?
5
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-
-
o
£
-
2L
S
4
== =~
= -
L= 2%
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k-] & Lo



<

alalakeNalal

DETERMINES IF SIMPLE INTERPOLATION 15 APPLICABLY «
20 IFLITPaLFaNTL) GO TO an
IL1=1TO/NTL
IL2=1TO=11 1%NTL
ILITAm ] Vo3
112T3=]( 21
1To=TPLI1L1T3)
IFCIL1eNFoIL?) Go 10 4n
CALCULATION OF 211 BY SIMPLE INTFRPOLATION OR FXTRAPOLATION.
an ASSIGN 31 TO LAL
GO 10 Sn
31 211=210
RETURN
CALCULATION OF 211 AS A WEIGHTFD MEAN NF TWO EXTRAPQLATED
VALUES.
4n ASSIGN 4) 10 LAL
60 TN S5n
el Z11sZ10
ITo=]PLI11L2T3)
ASSIGN 42 TO LAL
GO 10 sn
42 212=210
CALCULATES THF WFIGHTING COFFFICIFNTS FOR FXTRAPNLATFR VALUFS.
45 IP1=IPLI]1L1T3-2)
1P2=1PL(IL1T3-1)
IP3=1PLIIL2T2=1)
X1=xD(IPY)
Yil=¥YN(IP])
X2=xpDli1pP2)
Y2=YD(1IP2)
X1=XD(1P3)
YIi=YD(1P3)
NXN2=X[n=-X2
DYN2=YIn-Y?2
DX32=X3-X2
DY32=Y3-Y?2
DX21=X2-X1
DY21=Y2-Y]
HI'IDXO25013200Y02'D*32I"?/le32l013200Y3?'DY3?I
HZ-IDXOZGDX2]+0YDZ’DY21l"EJIDX?I'DKZJODY21'DY211
CALCULATES 211 AS A WEIGHTED MFAN.
46 21I=(W1®ZT1+W2#712)/(Wl4wW2)
RETURN
INTERNAL ROUTINE FOR PUNCTUAL INTERPOLATION.
CHECKS IF THF NECESSARY CFD VALUES ARE SAVED.
50 IFINCF.FQ.n) GN T0 &N
JCF==27
DO 51 LCF=1sNCF
JCF=JCF+28
FLITJ=CFLJCF)
IFUITR.EQeIT) G0 TO 7n
51 CONTINUE
CALCULATION DF NEW CFD VALUES. -
DETERMINES THF COEFFICIENTS FOR THE COORNINATE SYSTEM TRANS-
FORMATION FROM THE X-Y SYSTFM TO THF U-V SYSTFM, AND CALCU-
LATES THE COEFFICIENTS OF THE POLYNOMIAL FOR INTERPOLATION.
LOADS COORDINATE AND PARTIAL DFRIVATIVE VALUES AT THE
VFRTEXES.
6n JIPT=3#2(]Tn-1)
JPD=Q
DO 62 I=143
JIPT= 10T+
INP=IPT(JIPT)
X{11=xXnt1DP)
YU])=YD(]DP)

45

jir)
AN
1
1
1
10
1
In]
1]
o |
1Pl
1e]
1Pl
Al
=3
101
In
In1
10y
1Pl
1P
Pl
1P1
1P
1P
1P
P
1P
I
1P
el
1P
el
1Py
el
1P
1Py
1P
1P
1Pl
1Pl
1P]
1Pl
1Pl
IP1
1P
1Pl
Pl
IP1
1P
el
el
el
IP1
1P1
1Pl

IPI°

1P1
el
Pl
el
1Pl
1]
e |
i |

Uk,
LAY A |
Nuk
]
me
(all )
nea
D&y
Neg
056
LY
N&P
N&sa
nen
nal
Ne2
Nnga
O&b
nNes
OKE
ﬁf.'_l
O&E
69
nTn
a7
nTy
nTa
074
nrs
076
nTY
nre
nie
0RO
oe)
OR2
OR3
o). 1A
08s
NAK
NR7
NAR
om9
neo
ng
092
093
N9y
ngs
nag
na7y
neR
n99
100
101
102
103
104
105
106
107
108
1Na
110



201 =2nt1DP)
JPDD=&se ([DP=1)
NOD &1 kPD=14+5
JehD= JPhH+]
JenD= JpDD4+ )
PDLJPD ) =PDNLJPNN )
61 CONT INUF '
62 CONTINUF
€ DETERMINING
€ TRANSFORMATINN FROM THF
€ AND VICE VFRSA
A3 Xn=X(1Y
YorY(])
AzX(2)-Xx0
BxX(3)-Xxn
CeY(2)-YD
D=Y(3)=-vn
AD=A®n
BC=R*C
DLT=AD=-BC
AP= N/DI T
BP=—B/DLT
CP==C/DLT
DP= A/DLT
C CONVERSION OF THE PARTIAL DFRIVATIVFES
C TRIANGLE FOR THE U=V COORDINATE SYSTFM
6L AA=ARA
ACT?2=2 .napsC
CC=Co(C
AB=A®H
ADBC=AD+RPC
CD=C*D
BB=R+eR
BD12=2.n*B*D
DD=D=D
DO 65 1=1+3
JPDeSe |
ZUll)=Aa*PDIJUPD=4)+CaPDIJPD~1)
ZVIL ) =R*PDIUPN=4 ) +DePN I JPD=17)

X~Y SYSTE™ 10

THE COFFFICIENTS FOR THE COORDINATY
THF L=V SYSIFM

ZUUCT!=AA®PDIJPD=2 1 4ACT2#PD(UPD=1)4CCoPNIIBD)
ZUVL])=AB®PDIJPN=2)+ADRC*PN(JPN-11+CN*PN(JPD)
ZVVI1)1=BB*PDIJPD-2)+BDT2%PN(JPD=-1)+DD*PDI JPD)

65 CONTINUE

C CALCULATION OF THE COEFFICIENTS OF THFE POLYNOMIAL

66 POO=21))
Pl1O=2Ul1)
PD1=2VI])
P20=n.5%=70UUl1])
P11=2UVI(])
PO2=0.5%2VvVvI])
H1=2(2)1-PDO=P1N=P20
H2=2Ul2)-p10-2UUI11)
RELTAVIVES-S EErAVIVE S ]
Pan= 1NeN®H]-L.N*HP+N.58H3
Pun==15.N"H1+T7.nN*H2 -H3
P50= 6.N%*H1I=3.0%*H2+0.5%H2
Hl1=Z(3)_-Pnn=-P0D]1-202
H2=2V(3)-Pnl=-2VVI])
H3=ZVVI(a)=2VVI(1]
PN3= JN.N®H]I=4 N*HP 4+ 0. S¥H?
PRa=-15.,N*H]1+T7.N*H? -H2
PnS= baN®H]I-3.N*H2+N,.5"HY
LU=SORT(AA+CC)
LV=SORTIRR+DD)
THXU=ATANP?IC A

406
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z'ﬂ ~ e _:':ui.—::
w i T e S =
v RS - e
e B el 20 .
" P~ = -
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d.

1241319

1P 1312
150 112
1Pl 14
o e S
41 1l 1 B TS
el 117
1Pl 11R
SYSTEM IPI 119
LR Y2n
1Pl 12
18 122
IP] 122
IP] 174
1P1 125
1Pl 126
IPT 127
IP1 2P
In] 129
1Pl 120
IPT 131
IP1 1732
IPI 133
1Pl 1734
AT THE VFRTEXFS OF THF IP1 135
IP1 134
1P1 137
1Pl 1R,
IP1 120
1Pl 140
IPl 14
1Pl 142
1P 147
IPI laa
1Pl 148
1P1 144
IP1 147
IPI 1u4r
1P 149
IP1 150
IP1 1%)
IPI 152
IPI 1583
IP] 154
IP] 185
IP1 156
1PI 157
IP1 15¢
1Pl .159
IPl 160
1Pl 161
1P1 162
IPI 167
IPI 164
IP1L 185
IP1 166
IP1 167
IPI 16R
IPI 189
IPI 170
IP1 171
TPT 172
IPI 172
IPI 174
1IPI' 175
";—: -~
T e
= % 333
£ S £%
£ tERTE
< = =W *E
-t 1V |
£ «333E g
g ~g§5=™ £ £
-4 el av = -
= ~28wyp2 z c
'__f”a = -
= 228 a8 = -
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THUV:AT&H?ID!HJ—THNH

L T I
CSUV=C0SIT THUV ) 101 177
Pal=5.0rLveCSUV/(1jepyn 1Pl y7e

Pla=5S.neLyeCSlv/ vepns
H1=22VI2)-Pn)=pP) =D4)
H2=2UVE2)1-P 1V ~4u.neny,
P2]1= AN HYI=H?

1”1 170
121 re0n
1) 184

IRy 1Rp
P31==2  nepleH? | 171 1.9
Hl=ZUf31-9lﬂ-FII—°]a LLEN B IV
H2=Zuv11}-P11—a.n-P14 IP] 1A
P12= 3.nenyl-H2. & 0 . T
Pl3=-2 . nep]+H2 - Pl 1p9
IHU5=A1A~th~c.n-A1-Inxu IP] 18R
THSV=THUV=-THUS 0] 189
5NUV=SIN(THUV! IP1 190
LUSNUV= e SNUY 1er 1o
LVSNUV=LveSNY Py 10>
AA= SINTTHSV) /L uSnuy I 10
RB==-COS(THSV) /L USNUY 1Pt 104
CC= SINITHUS) /L VSNLIV In] 10s
ND= CnS[fmlSiflszHV INT 0
AC=AASCC 1Pl 107
AD=AAWDD el 1ne
RC=BBeCC IPI 109
Gl:iﬁ!ﬁflfioﬂlnf*?.n'Aﬁl 1Pl snn
n?zcc-nc-tq.n-nnoa.n-ﬁr: 1Pl »my
Hl=-hﬂ'Aﬁ'AA°ts.ﬂ'ﬂn'ﬂﬁ'ﬂﬁn*IQ.H'H(4HDI'Pn]! IP1 27>
1 -C('CC'CC'IS.P-(f'Dn'un5¢ra.n~nn+nr:-p]n: 191 203
H?-O.stfvvtzlwonz-nlz 1Pl 20
H320.5%200(3)-p2n-py) 1P 2ne
922=tn}oHpon?-u1-u11/rn!4n?1 1P 2ng
P32=H2-p)) Py 207y

P23zH3-p))

"] 2np
C SAVES THF CFq VALUES IN THE rr ARRAY., IP]T 200
AT TFINCFLLTJNCFMX) NCF=*"1aq IP1 20
ICF=1CF+) IPI 211
IFtICF.GT.NCFMxl 1CF -} Il 21>
JCF=2R% [CF-27 IPr1 211
CFLUCFI=FITn P 214

DO 68 reF=1,.27 Pl 215
JOF=JUCF+1 IPI 218
CF[JCF}=CF0iKCFI IPI 217

68 CONTINUE IP1 218

GO TN B IPI 219

C LOADS THE cFn VALUFS FROM Tuf CF ARRAY, 1Py 220
76 DO 71 KCF=)427 el 221
JCFeUCF+1 I1P1 22>
CFntK(FltcrtJCFJ ' 1Pl 223

71 CONTINUE IP1 224

C TRANSFORMATION OF THE COORDINATE SYSTFM FROM Xx-y T0 u-v s IP1 22%
8n DX=XI]l-x0 IPE 226
DY=Y[I-Y0 IP1 227
U=AP#NX4+RpepY 28 IPI 278
V=CPeDX+DPeDY 1Pl 229

C FVALUATION OF THF POLYNOM] AL Iy 2ap
RS Po-pnn+Ui{Pln+u'(920+u'tP1ﬁ+U'{Phn¢U'DBUIJll IP] 23)
p]'Pﬂl+U'lPl]‘U'ip?]+U'IP1]¢U'PQ1IJJ IP1 72137
P2-9024U!t912+utlDpp4uunqr11 IPT 233
P3xP03+U (P13+ysp23) IP1 234
P4=Po4+Uep) g IPl 213g
ZIO-PO#V'[PI+V'IPP+V'fP?iV'fP&+V'P511?1 IP] 213¢

GO To LBL» (3144144 IP1 237

END IP1 2138

47
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60 TN 24
2?2 FNRPPY Wy [ 1)
FNNPPVY =Wy ()

an JFIMDGGTLY)

WEISI=FNT
wWr (6 ) =FNL
Go Tn 5n
42 FNT=wWKI(5)
FNL=WE (&)

¢ ESTIMATES PARTIAL NERIVATIVES AT ALL DATA POINTS.
sn CALL IDPDRV XD+ YD+ ZDsWK L IWIPN) s Wx ( TWPD) )

¢ LOCATES ALL INTERPOLATED POINTS.

GO TO 70

a0 IFIMDI'\OEQ."}
Ixl=0
IWIT=IW]T=]
INC==]
DO 62 1YI=1sNYID
INC==INC
Yil=YlCIYI])

O TO 42
4] CALL IDGFCMIxn.vn.uxtlulPTI-Nrtlwynl1.ur¢1w1pn|}

DO 61 1x10=1NXID

IXI=1xXI+INC
IWiT=UwWlT+[NC

CALL IDLCTNIXD YD WK (IWIPT) WK (L TWIPL ) »
1 XTOIXT oYWkl UWIT))

61 CONT INUE
IX1=1X1+INC
IWITa W IT+#INCH+NY]

2 CONTINUE

n

IN THE WK

IFI(NDPDNF s NDIPPV) Gen 1N an
IF (NNPO « NF « NPV ) oo 10 90
?FtMDQ.NE.?’ LO 1O 24
23 FNXIPV=wWy (1)
FNYIPV=wr (&)
IFINXINNFNXIPV] 6N TN an
IFINYIOWMFNYIDV) Gn 10 AN
GO TN 3n
24 WE{3)=FNXIn
WE (4L )=eFNYID
¢ ALLOCATION OF STORAGE AREAS
an NDNDM] =NDPn® (NDPN=1)
IWIPT=7
IWIPL = IWIPT+NDNDM]
IWIPN= [W]PL+NDNDM)
[WPD = ]WIPN+NDPOENNPT
IWlT =1wPD +NDPO*5
C DIVIDES THE X-Y PLANE INTO A NUMBFR NF TRIANGLTS AND
C DFTERMINES NNP POINTS NFARFST FACH DATA POINT.

c INTERPOLATION OF THE Z1 VALUES.

Tn NCF=D

1CF =0

I T=IWIT=1

1x1=0

121=0

INC==]

DO 72 IYI=1lsNYIOD
INC==1INC
YlisYILIY])

Do 71 IXIN=]1sNXI]
JWIT= WwlT+1NC
IX1=1XI+1INC
1Z1=1Z1+INC

4]

CALL 1DPTIPLXDsYDs2ZDrk

1 WK JWIT)

T CONT INUF

TIWIPT ) +WKITWIPL) +WKETWPD) s
PiIXT1aY1Te2101200)

S TR
-n ™=

— i e S e e e e e S e
L L S S R e
b L - T

15F
I5F
15F
15F
1%F
15F
1%
15F
1571
15F
164
15F
1S9F
15F
15F
158
15F
15F
15F
15F
15F
1SF
1S5F
15F
15F
19F
I5F
15F
16F
15T
1 5F
1SF
LhE
15F

" ‘155

5F
15F
15F
I5SF
I'SF
ISF
15F
15F
ISF
15F
ISF
15F

i
Ny Y
AT AN ]
Nnena
OTO
nT7)
Hnre
n7T3
nNTa
f*re
(Sl IS
~nT7
nTp
g
npn
ne
UR?
nga
NAL
nps
NAE
r}q‘,f
neR
oRn
nan
uRl
nay
nnAa
LA
has
096
no7y
naonr
nan
iy
101
102
1N
1N4
105
106
107
10R
109
110
111
1)
111
114
115
116
1117
118
119
120
121
122
123
124
125
126
127
128
129
130
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C

SUKROUT INF ln&{r?Iup.an.A'.vu.;p.wy.nt1.5*1.11,71.311
THIS SUHROUTINE PERFORMS SMOGTIE SUKTACT FITTING WHFN THf PRO-
JFCTIUNS UF THE DATA POINTS N THE Y=Y PLANE ARF [RRFGUL ARYY
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Splines in geophysics

Pedro Gonzalez-Casanova* and Roman Alvarez]

ABSTRACT

Modeling and contouring of geophysical data often
require distributions of regularly spaced values. Splines
have been shown to be the most accurate methods to
obtain such distributions. We emphasize the general
problem of interpolating random distributions of data
on a given surface.

Splines are classified into unidimensional, quasi-
bidimensional, and strictly bidimensional; based on this
classification, a systematic derivation of the correspond-
ing interpolating techniques is conducted. Two ap-
proaches are presented to obtain unidimensional
splines: one based on the continuity of the first and
second derivatives of the polynomials involved, and the
other based on a variational approach. Quasi-
bidimensional splines arc constructed based on the uni-
dimensional approach, while strictly bidimensional
splines are generated by minimizing the bidimensional
curvature. Quasi-bidimensional splines can be used for
processing data distributions along nearly parallel lines;

linear projections and paramelterization are the lech-
niques used in interpolating this type of distribution.
Strictly bidimensional splines minimize curvature
through the analytic solution of the Euler-Lagrange
equation or by a finite-difference algorithm. The maxi-
mum error, mean error, and standard deviation between
interpolated data and exact field values produced by
various prisms show that quasi-bidimensional splines
are 2.7 percent more accurate in the maximum error
than strictly bidimensional splines when both tech-
niques are applied to regularly spaced data. However,
for irregularly spaced data, three examples containing
300, 600, and 900 random data points show the superi-
ority of the thin-plate approach over the quasi-
bidimensional splines. A comparison between various
interpolation densities on regular grids, starting from a
set of 327 randomly distributed magnetic stations, illus-
trates some differences between geophysically meaning-
ful interpolations and interpolations carried out only for
conlouring purposes.

INTRODUCTION

When geophysical data are presented in the form of con-
tours, automatic contouring is often performed by interpolat-
ing a distribution of regularly spaced discrete data points.
Since field data are seldom regularly spaced, methods must be
provided for obtaining a regular network from irregularly
spaced data.

Interpolating irregularly spaced field data by hand is essen-
lially a linear process in which the concept of maximum
smoothness is implicitly applied. Mathematically, the conti-
nuity of a function and its first and second derivatives at
discrete, observed points lead to contour smoothness.

Crain and Bhattacharyya (1967) introduced qualitative cri-
leria to evaluate accuracy versus computation time. The high-
esl quantitative accuracy was attained by least-squares meth-
ods using orthogonal polynomials generated by the Gram-
Schmidt method. Subscquently, Bhattacharyya (1969) pro-
posed a method of interpolation based on cubic-order sur-

faces: he concluded this method was more accurate than using
orthogonal polynomials. Various papers [ollowed this ap- ¢
proach and introduced variations to such "an algorithm
(Thomson, 1970; Heissing e{ al, 1972; Rasmussen and
Sharma, 1979).

Crain (1970) established a two-fold classification scheme of
interpolation methods: (1) methods of mathematical surfaces,
and (2) methods of numerical surfaces. The first group pro-
duces an analytical surface passing through a set of observed
points, while the second group develops interpolated points,
from the distribution of neighboring, observed points.

SPLINE CLASSIFICATION

A thin metallic strip when flexed and forced to pass through
a set of points in the XY plane generates a unidimensional
spline. Reinsch (1967) showed that such a curve corresponds
to a set of cubic polynomials, cach describing the curve be-
tween two successive observed values. These polynomials

Munuscript received by the Editor November 28, 1984; revised manuscript received April 4, 1985,
*Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D. F., Mexico.
tinstituto de Investigaciones, en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, 01000 Mexico, D. F., Mexico.

" 1985 Society of Exploration Geophysicists. All rights reserved.
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maintain continuity of the cubic functions and their first and
second derivalives at every point (joint) in which the poly-
nomials meet. Bicubic splines contain essentially the same

concepl. The metallic plate is assumed deformed by forces

acting at each observed point applied to fit it; boundary con-
ditions are required to fix the perimeter of the plate.

Since 1960 splines have been used for the interpolation of
irregularly spaced geophysical dala along a line (e.g., Ahlberg
et al.,, 1967). Spline interpolation also found its way into bidi-
mensional interpolation starting from regular grids (Bhatta-
charyya, 1969; Heissing ¢t al,, 1972; Dooley, 1976). Other al-
gorithms have been proposed for the interpolation of irregu-
larly spaced data on a plane (e.g., Briggs, 1974). Rasmussen
and Sharma (1979) brought up the problem of precise interpo-
lation in terms of absolute errors. They evaluated spline inter-
polation and concluded that for various causative bodics and
conditions, spline interpolation yielded excellent results. How-
ever, their results are for data aligned along parallel lines, not
for completely random data points, The distinction is impor-
tant since the same algorithms do not work properly for
random data.

Here we emphasize interpolation of truly random distri-
butions of data points on a given surface using variational and
minimum-curvature approaches. We base the work on that of
Duchon (1975), Paihua and Utrera (1976), and Wahba and
Wendelberger (1980) who proposed a substantially different
construction of the analytical surfaces involved. Their algo-
rithms are only beginning to find their way into the treatment
of geophysical data.

For clarity, we classify splines as: (1) unidimensional, (2)
quasi-bidimensional, and (3) strictly bidimensional. Quasi-
bidimensional splines correspond to data roughly aligned
along straight lines, such as flight lines, while strictly bidimen-
sional splines correspond to distributions of truly random
data.

UNIDIMENSIONAL SPLINES

We review two approaches for generation of unidimensional
splines. The first approach adjusts a curve of cubic poly-
nomials to n points distributed in the XY plane. The second
approach uses a thin metallic strip fiexed in such a way that it
passes through all the points of the distribution. According to
Hamilton's principle of least action, the curve obtained will be
the one that minimizes the energy of flexure of the metallic
strip.

Cubic splines

We consider a distribution of points x;(i = 1,..., n) with
X;—; < X;, and a set of functions {u(x)} that take values u; at
such points. The interpolation function u(x), as pointed out
previously. is formed by cubic polynomials at each interval
[x,-,. x;). We call P, = uj(x) the first derivative of the function
u,(x) at a joint. The cubic polynomial between two joints can
be properly described if its four coeflicients are known. As-
suming the values of the function and its first derivatives are
known at two successive joints, this procedure yields four
lincar equations that can be solved for the four unknown
coefTicients.

At two successive joints @ and b

Cla) = Qp.

Cla) = ay,

C(b) = ug + a,(b — a) + a, (b — a)* + ay(b — a)’, (n
and

C'(h) = a, + 2a,(b — a) + 3u, (b — a)’.

Let C = Ma be the corresponding matrix equation. Solving
the system

a=(M')C

and substituting the values of a in the general formula for a
cubic polynomial, we obtain

C(x)=Clu) + C'(afx — a)

O -Cla)_ Ch)+20@]
(h — a)? (h — a)

C'la)+C'(b
I:”’ 3(C(b} C(ﬂ)HM]H a)’. (2)

(b—a)?

Expression (2) corresponds to the polynomial between joints a
and bh. Therefore, given the values of a function at two suc-
cessive points, as well as its first derivatives evaluated at such
points, there is one and only one cubic polynomial that passes
through them. Thus with n points and their first derivatives,
there is one and only one set of cubic polynomials passing
through them.

However, we assume that at each u, the value of the first
derivative is also known. In practice this is a restriclive con-
dition since normally the field values (e.g., magnetic, graily)
are known but not the values of their derivatives (ie.. the
derivatives at the joints). However, this can be overcome as.
suming that (1) the first derivatives at the first and last poinis
are known, and (2) the curve formed by the polynomials is
continuous in the second derivative. The latter condition re-
sults in a new set of linecar cquations from which we can
obtain the first derivatives at intermediate points P,, .
P
Take three successive points x,. x,, and x, and let i{x) and
w{x) be two cubic polynomials that satisfy

u, = v{x,) =w{x,) and P, =v(x,)=wlx,) &)

Differentiating equation (2) twice and making a = \, and h =
X, and equating v"(x,) to w'(x,), we obiam ¢

Ax,v(xg) + 2(Ax, + Axp)P, + Axgw(x,)

Ax Ax,
= 3{At, [uit;l— wix,) + _AT vx,) — l’(\'ol]}

A recurrence relation is obtained in the following form: i
allows computation of intermediale derivatives:

Ax; Pi_y + 2(Ax; + Ax;_ )P, + Ax;_ Py,

3] Ry O e B T8 W
= X, _‘+ X; ¥ 1= 1y, =il £
= IA ﬂ.\,_| {‘h

Such a relationship is linear with"J/ — 1 unknowns in P,
withi=1,..., 1 — 1:it has a tndiagonal matrix that is strictly
diagonal dominant. This is casily shown by dividing cquauoﬁ
(4) by (Ax; + Ax;_,) and writing the corresponding matriy
cquation. Since
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AN;:, Ax,

Ax, + Ax, -, - Ax,_, + Ax;’

and since u;; are the elemenis of the coeflicient’s matrix, then

lagl > Yla

iti

gl e Jag| =2

and
Elaut =%

L]

Thus. the only additional condition for the matrix to be diag-
onal dominant is that the off-diagonal elements in the first and
lust rows, are less than 2. In this case equation (4) contains
nonzero cigenvalues (Marcus, 1960). Consequently, we arc
dealing with a singular matrix with 1 — 1 linearly independent
cquations, implying that the Pi(i = 1,..., I — 1) unknowns are
uniquely determined. Thus, demanding continuity of the first
and second derivatives at the joints results in a piece-wise
smooth, cubic polynomial, with values u; in u(x;).

Variational approach

According to Hamilton's principle of lcast action, a fiexed
metallic strip adopts the shape that minimizes the flexing
cnergy. This energy is proportional to the square of the curva-
ture of the strip. The integral of action J is given by

J-= J[;;”]" dx. (5)

The action J has 1o be minimized, yielding a function g(x;) =
vi (i =0, ....n). such that y, arc known ficld values and x, arc
the coordinates of these values, Il we let g(x, a)= glx,
0) + ah(x) be the variated trajectory, then the condition for
finding an extremum is

2 .g (6)
Fu a=0 e

We could now directly obtain the Euler-Lagrange equation.
forcing the strip to pass exactly through the observed points.
However, we take advantage of the simplicity of the unidimen-
sional case and introduce the concept of smoothing in the
variational approach.

Il the strip passes not cxactly on the points but in their
neighborhood, the strip deformation is smaller and the corre-
sponding curve is smoother. The smoothness depends upon
the radius of the neighborhood; this condition is expressed

mathematically by
) (sﬂx.-l - _r;) i o
i=0 oy

where s is a factor that multiplies the radii of all the neighbor-
hoods. The parameter 8); controls the degree of smoothness at
cach observed point. The mequality (7) can be expressed as an
equality with the aid of an additional, arbitrary parameter =:

& (gx) = y\ .
T i) =g—zh 8
X ( 5, ) s (8)

i=0

Therefore, = represents how close the deformation lies to ;!
the smaller z. the closer the deformation to y;.
The function g(x) minimizes J and complies with the re-

strictions imposed on the strip: thus, from equations (5) and

(8)
\:| 9)

'm n P
J = J [g"(x)]* dx + P[ y ('_".‘.l‘l__.h) i .
', =0 5.“‘:

where P represents a Lagrangian multiplier.
By demanding that the additional condition

aJl(z
e (10)

[ #5d

is met, the strip is forced to be in the neighborhood (8y;) of.
but as close as possible to, each y,.

From equations (6), (9), and (10) and assuming that the
derivatives at the end of the strip are zero (i.e., the strip is fixed
horizontally at the extrema), we obtain

o i=1

Xa m=1
J‘ (g™ hix) dx + Z Wix)lg"(x) - — 9"(x).]

n-1
+ Eht.\';l{(y"'l.\}}. —gT0) =}

+ 2P (-E’__""-‘ j_.-"*ﬂ =0 (11)
oyf

However, since the function h{x) is arbitrary, the terms in h(x))
and I'(x;) are linearly independent. On the other hand, sum-
mations contain only discrete values ol h, while the integry)
contains all the values of h(x) between values x, and x,. The
only possibility for the terms to be zero in equation (11) is that
they are zero independently.

Conscquently, we obtain from the first term
q"(x) =0 (Euler-Lagrange's equation), (12)

and from the second and third terms
X) =¥
“-gm{.‘f,-]. + g"[.\'.-:'_ = 2P (‘(i_i)ﬁ"—'_'!)-

g'(x;), —¢’Ix;)- =0, (13)
glx). = glx). =0,

and gix;). —glx;) =0

Onc solution of cquation (12) is
dolxX) = a; + bi(x = x) + ¢l = X0 + dilx = x). (14)

Determination of the coeflicients of this polynomial is made
starting [rom the continuity conditions in equation (13). From
the continuity of the second derivative we have

AT el (15)
T

and from the continuity of gt x) we have

a,, 4y — 4

‘ — ¢;h, — d.h}. (16)

Thus. we define
= Xouq =X

C=C e Bl (¥
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N = (Foe comn ].',,)?.
Y [ |
and
D = diag (8yy. ..., 6),).
T is a tridiagonal matrix of order n = [ with terms
[ 2h,  + h)/3,

]

and
Liior = e i = M/3
and Q is o tridigonal matriy with terms
di i =Uhioy o qi= =V = Ui gy = 1

We obtain from the continuity of the first and third deriva-
tives

(Q'D?*Q + PTIC = PQ'y. (7

and

y—P~'D*QC. (18)

Thus, if we know the value of the Lagrangian parameter P,
from equation (17) we can obtain the vector C, and from
equation (18) we obtain vector a. The remaining coeflicients d;
and b, can be calculated [rom the recurrence formulas (15) and
(16). We have thus determined the values of the coeflicients ol
the cubic polynomial at each interval.

FFrom equations (8) and (10) we obtain

- =0, (19)
and defining a function F(P) as
F(P)=DQ(Q'D'D’Q + PT)"'Q’y. *(20)
cquation (8) can be written as
FYP)=s~ 22, (21)

From equation (19) two possible solutions are obtained:
P =0 or - =0. In the former, boundary conditions do nol
affect J and the polynomial is reduced 1o a straight line. In the
latter. and using equation (21). the polynomial reduces to

FiP) = s'2. (22)

The solution of equation (22) lets us get the value of P. With
this last step the parameters necessary o interpolate are com-
pletely determined.

In summary, equations (15). (16), and (18) represent the al-
gorithm for obtaining 1-D interpolations with the variational
(1.e., cubic functions) approach. Equation (12) shows that one
possible solution of the functional of equation (5) is a set of
cubic splines. Obviously, cquation (12) can yicld other solu-
tions.

QUASI-BIDIMENSIONAL SPLINES

The quasi-bidimensional method deals with obtaining a
cubic. bidimensional surface, starting from one-dimensional
(1-D) splines. Assume that we are dealing with a series of
straight lines, parallel to the x-axis but irregularly spaced in
the v-direction. Along the x-axis. 1-D splines can be fit 1o the

data to interpolate and regularize in that direction. We then
have equally spaced data (at intervals Ax) on those lines. A
second interpolation in the y-direction, along fixed values of
and with a Ay not necessarily equal to Ax. will yield a repu-
larly spaced grid.

Thesc operations arc mathematically equivalent to per-
forming a composition ol orthogonal splines (tensor products)

I+ 2+l

M, 1) = Y Y Bon G (I, (1), (2%

me 0 a0

where ulx, v) represents the bidimensional surface, 3, is i set
of coeMeients, and ¢, and y, are piece-wise smooth, cubic
functions of class C* (De Boor, 1962).

From the previous section, given n points (uy, ..., 1,) and
the derivatives (P,, P,) at both ends of the interval, there is
one and only one unidimensional spline that passes through
these points. Thus, given a point in R"*?, there is onc and
only one dssociated unidimensional spline. Since B™ % is 4
linear space and since there is an isomorphism between R" -
and the set of unidimensional splines S(x: Xq, ..., X;). this set
is also linear. Equation (23) involves the product of two lincar
spitces: the space of splines in the x-direction ¢, and the space
of splines in the y-direction, y, . These spaces have dimensions
(I + 3)and (J + 3), respectively. The product space has dimen-
sion-(/ + 3) (J + 3) and constitutes the lincar space of bidi-
mensional surfaces. However, if the linear spaces ¢, and y,
are not orthdgonal, as in the case of nonparallel flight lines,
the tensor product does not yicld a lincar space. This is the
main source of error in the quasi-bidimensional approach. ~

De Boor (1962) showed that the cubic splines given by
equation (23) are uniquely determined il the flollowing vilues
are known:

Uymtdx,.y) i=0,....0: j=0...0d
Pi=ulx.y) i=0.1:  j=0...J

(RET]
qp=uwdx,0) i=0..... 10 j=0.J
s'} - "n‘!"i' ,'-'J.')l =), I: | = 0.4,

Assuming that the values of the polynomial w(x. v) were
known, as well as its derivatives in x, y, and xy. De RBoo:
(1962) obtained a matrix equation for determination of the |i_,
cocfTicients of the polynomial surface

AKA' =§. ' (25,

The matrix K contains values of the polvnomial and ity de
rivitlives, while [A] is formed by elements thit depend upon
the coordinates of the regular, but not equally spaced, gnd
Similar 10 the umdimensional case. the intermeduite derng
tives with respect to x. v, and xv are obtained by the recur
rence formula derived from the continuity of the second de

rivative:
AY; 0, ;.0 + 2A8Y,_, +AY)Q, + AY,0,, ,
AY,.
=3 = (U, ., - Uy
AY; g
AY,
+K‘__’IIL-',J-—U,‘,_.}]. ji= | P
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aY, (S, ;0 + 2AY; ., + AY)S;; + AY;S; ;-

]

AY
- 3[ A’}j' (P ,or— Py
J

AY,
AV,
AX, Py + ABX oy + BX)P;+ BX Py,

+ (Pu"P;.;—d]. J=hcayd =1,

AXss
= 3|:-H‘1“1U.~ .i— Ui

+ =1

ak‘l .
AX, (U, - U,_l_j:-:| f=k

and

AN, (S, + 28X + AX)S; + AX,5: 1.5

AXy-
=3 A‘E‘\'—‘.IQI*LJ_QUI

o 2hisa e 0 .;J ety nad=1; (28)
i i i BN

This approach is used 1o obtain the splines if the field values
are regularly distributed, since the only requirement for the
validity of the algorithm is that the 1-D splines lie along
straight lines. However, it is well-known that in geophysical
exploration such a requisite is seldom fulfilled, although good
approximations are sometimes obtained in acromagnetic flight
lines. Generally the lack of parallelism and the lack of
straightness as sources of error must be considered.

Two approaches were followed to minimize the above diffi-
culties: (1) correcting the data on the basis of least-squares
and linear projections (Bhattacharyya, 1969 Rasmussen and
Sharma. 1979), and (2) correcting with parametric functions
(Heissing et al., 1972; Rasmussen and Sharma, 1979). The first
approach uses straight lines, while the second uses polygons
" approaching straight lines. In the second case interpolation is
performed with the original field values, although slope disper-
sion (i.c.. the range of bearing variations along a flight linc) is
high and inconvenient. In the first approach fitting a straight
line and projecting the original values onto it is the source of
error. We hriefly discuss both methods.

Lincar projections

This approach considers data points distributed in the
vicinity of straight, parallel lines. The algorithm, proposed in
Bhattacharyya (1969). deals with acromagnetic data using De
Boor's tensor product formulation. The coefficients ol the
straight lines arc obtained by least-square fits of the data sets.
and then the data points that do not lie on the straight line
arc projected lincarly onto it by the following procedure.

(1) Search for the datum point closest to the fitted
line: such a point is called a pivot point and is imposed
so its projection onto the line has the same ficld valuc
F, lie, we assume that it hies on the line).

(2) Take the closest point to the pivot; then the field
projected F, onto the point on the straight line is given
by (Figure 1):

F, = (dy/d,)Fo + [(} = d3)/d\JF . 27)

where d, and d, are distances projected [rom the field
point to the pivot and from the projected point to the
pivot. respectively. Fg is the field corresponding 10 the
point to be projected.

(3) The projected point is now considered a pivot and
the process repeated for the next closest point.

Once the projections are performed, the tensor product of
the splines expressed by equation (23) is readily obtained: to
each straight line fit a unidimensional spline and obtain
cqually spaced points along the y-axis. Next, adjust straight
lines parallel to the x-axis with splines and obtain equally
spiced points in this dircction.

As pointed out before, this algorithm introduces sources of
error before De Boor's treatment can be applied: the point
values on the straight lines are not actual field values but are
projcctions.

Parametric splines

An irregular distribution of data points is the basis for pro-
ducing a set of parametric bicubic splines (Ferguson, 1964
Heissing et al., 1972). The interpolating surface is formed by
irregular. bicubic surfaces (Figure 2a). Each bicubic surface
must preserve continuity of the function and of the first de-
rivative with respect to contiguous surfaces. Figure 2b shows a
bicubic surface A, ; in which two parametric coordinales u, v
are defined along the directions shown: curves k, and k, are
parameterized with respeet to the variable v and curves k, and
k, arc parameterized with respect to v. Two points are lo-
cated: P(u) on k, and Q(u) on k,. An interpolation is made
from P(u) to Qfu) with a curve scgment parameterized in the
coordinate . defining the bicubic polynomial

Pl v) = 3 =2[Qiu) — P(u)] + x(u) + Hu)}
+ 2 13[Qu) = P(u)] — 2x(u) + yu)]
+ rx{u) + Plu). (28)

flight line

pivot

Fic. 1. The method of lincar projections uses ficld values F
that have been projected onto a straight line from the actual
Might line.
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where x(u) and yu) are the tangents to the curves in the para-
metric direction v at points P(u) and Q(u). Both tangents are
given by cubic interpolations in the u direction. Notice the
similarity between equation (28) and equation (2) with a =0
and h =1 [ie., equation (28) is normalized in the interval
(0, 1)].

The bicubic polynomial (28) is expressed as

=N
Puvy= Y Y unR,, (29)
poig 0
which corresponds to De Boor’s tensorial product [equation
(23)].
The 16 constants R, are determined through continuity of
the first derivatives along the perimeter of the surfaces A ;
(Ferguson, 1964):

Roo = Pi;"
Ry, = SU-

RO: . 3(})l,,a'*l - Pa}] = (Esl; + Sl,j"ll‘

Roy = 2Py = P j4 1) + (S + Sijo i
R|n=Ti_;"
R, =0,

Ry, = 3T, ;., — Ty
Rys=2AT; = T jo 1)
Ryo = 3Pisy ;— Pi) — Q2T+ Tiy g
Ry, = 3S;aq.j— Siph
Ryz=3[3Psq.jas = Pijar+ Piy— Piiy,))

+ 2T, — T e )+ (Teni— Tisajer) -
il s-ﬂ.p:]].
Ryy = 2[3(Pysy.j— Pij+ Pijer = Pisy yai)
T)+ (Taqjor— Tier, )]
Sy= S0

ot 2(51_;“ S:' 1.;) + (Si.}" 1

+ AT, oy —
+ 3Sua0y ¥ Siwaggaa =
Ryg=2AP;— Py )+ T+ Trea s
Ry, = 2AS;; — Siv i M
Ryz =3[Py jo 1 —
AT e + Toag e ) = (T4 Ty )
Sijsah

‘Du|,j-:| + PiOI.;_ Pij]

+4{s,4 Tl e SUI + --'[Su 1. j+1 =

and

Ryy =2[2AP;;— Pivy j+ Picy, joi —Pisr)

+ (Ty+ Tiea )= (T jer + Tiay o)

+ (S;;— Si- 1 T S;.,-: = Sivr.jo1)

where T;; are derivatives with respect to the parametric direc-
tion u and §;; are derivatives with respect 1o the parametric
direction r.

Parametric splines eliminate the error introduced by the
linear projections discussed previously; however, parame-
terization entails a much larger slope dispersion (i.e.. the lines
are not straight lines). Therefore. while one source of error is
eliminated. another one is introduced. The purametric algo-

rithm of Rasmussen and Sharma (1979) is a particular case of
the one presented above and is not discussed here. Thus, the
two approaches reviewed aim to adapt nonuniformly distrih-
uted data 1o a form suitable for the application of the tensor-
product method proposed in De Boor (1962). In performing
the adaptations, errors are introduced: the larger the depar.
ture of the data set from straight lines, the greater the error
introduced in the interpolations.

STRICTLY BIDIMENSIONAL SPLINES

Two methods in the geophysical literature deal with strictly
bidimensional splines—one method uses numerical surfaces,
and the other uses mathematical surfaces, Numerical surfuces
yicld only approximate solutions: Briggs (1974) uscd a finite-
difference method to find a solution. We show that the ana-
lytical solution offered by the mathematical surfaces yield,
better interpolations than those obtained with the numerical
surfaces. In addition, the analytical method has as many solu-
tions as there are kernels in the Euler-Lagrange equation in
two dimensions. The pseudocubic splines are one such solu-
tion: however, a more precise approach is the thin-plate solu-
tion. We discuss the thin-plate solution in detail, since only 4
short note has appeared about its use in the treatment of
geophysical data (Campos ct al, 1983). These methods cun
interpolate adequately between sets of truly random data.

b)

FiG. 2. (a) In the parametric method the interpolating surface
is formed by irregular. bicubic surfaces. (b) The bicubic surface
A, ; shows the parametric coordinates w, . Curves k, and «
arc parameterized with respect 1o « and curves k, and A, ar¢
parameterized with respect 1o r. '
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The thin-plate approsch

The flexure energy of a curved plate is given by (e.g..
Landau and Lifshitz, 1970, 46)

2 2 1\ 2
s {3
N5 Oy

22 \2 N2 oAl g
+ 21 -c][(f L ) L3 ‘7{-]} dx dy,  (31)
éxdy ox? dy

where K is a constant that depends upon Young's modulus
and Poisson’s coellcient o represents the transverse contrac-
tion of the plate under longitudinal tensile strain. Here o
varries between zero (metals) and 1/2 (rubber). The smoothness
of the deformation depends upon the rigidity of the plate;
since we are interested in the smoothest interpolation, we con-
sider 6 = 0 and K = 1. Thus equation (31) becomes

2 N2 2\2
RN
ex* cxcy ay

As for the 1-D problem of the deformed bar presented
above, we require a function g(x. v) that minimizes the func-
tional equation (32) while taking the values glx;, y;) al coordi-
nates (x,. v;). That is, the thin plate acquires the observed field
values at their corresponding positions.

We can obtain the Euler-Lagrangian equation by a vari-
ational approach, just as we did for the 1-D case, although
this procedure is more involved. However, another possible
derivation is considerably more concise. The functional analy-
sis aspects of such a derivation were emphasized in Duchon
(1975): we emphasize here the minimum-norm concept and
the boundary conditions problem, which enhances its appli-
cations aspects. Instcad of finding a minimal trajectory, we
minimize 4 norm in a given functional space [i.c., minimizing
cquation (32) is equivalent to minimizing a distance in such a
spice ). The resulting set of functions g(x, ¥) fulfills the require-
ment: however, of those functions we use only the ones that
tuke the (field) values glx,, ¥ i =1, ..., n, where n is the
number of known (field) values. First, we deal with this prob-
lem of boundary conditions and subsequently we consider the
problem of minimum curvature.

Boundary conditions for the plate.  The interpolating sur-
fuce can penerally be represented by a function glx, v) be-
Jonging to a functional space X. The requirement that the
plate pass through the set of observed points implies that gl(x,
v) takes the values g{x;. ) for (x;, y)i=1,....m thus the set
[#x,. ¥ih oonw gX,. ¥o)] belongs 1o R A transformation can
be detined from the functional space X to R" (Duchon, 1975):

A: X +R"
with the property

Alg) = [g9(x . 3y oens 90X 1]

ie.. A links the function g{x, ¥) in X to the point [g(x,, ¥\).....
glx,. v,)] in R". Figure 3 shows pertinent relationships be-
tween the two spaces X and R" and the transformations A and
A", Assuming known field values, we have a vector z, of R".
The set of functions that relates g(x. ) L0 zo by means of A is
needed. A4~ '(z,) is the subset of functions that take the known
field values: the function needed minimizes the curvature.

Curvature minimization.—As pointed out previously, the
curvature musl represent a norm in a functional space Y the
problem is solved by minimizing such a norm in Y.

The inner product of two vectors y and y* in Y is defined by

2
Wyly= T | vuleomptcndxdy, (33

ij=1 Jra

where the space Y is formed by four-dimensional vectors y =
(J11+ Y12+ Y215 ¥22). These quadruplets are necessary since the
curvature in A has four dilferential operators:
2 a2 N 2

( ¢ 8

TR e and YL
X axdy adyox ay

When y = y’, the internal product is reduced 10 the norm in

2
Iyli= L j yiytx 01 dx dy. (34)
ij=1 JR2
and il
2%y &’y @y '
Vo= —, Yiz =T Y- R A 23T A3
=33 Y= 300 Yo =50 ox Y22 oy’

then the norm is precisely the curvature.
An additional transformation T will be needed since the

interpolating functions g(x, y) are in space X, whereas the
quadruplets (y;,» Y12+ Y21, ¥22) are in the Y space, where the
norm (curvature) is minimized (Figure 3). Let

T: X=Y

with

e a2 22 a2
¢’y ¢y ¢y ©
Tly) = (— — -—y)

ax?' dxdy’ dyex’ 0y?
Duchon (1975) showed that the set of functions denoted X has

the structure of a Hilbert space if the inner product is given by

lg 1} = lgtxy, 1P + 195, ) P+ lglxs, 3P
+3 J1D;;_ﬂ(.\', ¥} dx dy, (35)
i d

where (x,. ¥,), (x5, ¥3), and (x5, y;) are three arbitrary, non-
aligned points, and 3
32 ot 52 o2

L)
v D e D e - and Dy, =—3.
ox? o axdy 3 oydx gyt

D=

Let z, be the vector in space Z containing all the point
values to which the plate must be deformed, and let 4~ Hzg)
be the set of functions (linear variety) in X that fulfill the
above restriction in Z. From this set let ¢ be the wanted
solution. Thus. in the set T[4~ '(z,)] the element of the set
T{o) is closest to the zero of the Y-space (i.e.. the element
yielding the minimum norm). This statement can be expressed
as an internal product by letung T(x) be an element of

TLA™0):
(Tio). T(x))y =0,

where ¢ ) means interior product. We now find the equivalent
property in X' by changing the domain and the norm: thus

(T(e). TLX))y =0 (T T, ox)y = 0.
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We show that T7To may be expressed as a linear combi-
nation of the rows of A (i.e., when A is considered a matrix):

T'To = A"
Thus
{Tlo) T(x)Dy = {ATh, xDy = (I, AxDy. (36)

where T(x) is now not necessarily in T[4 ~'(0)]. Thereflore, the
minimization of the norm in Y has been related to a condition
in space Z.

Let A(g) = gla)) such that y € X and «, are the plate defor-
mations at (x;, v). The term g(a)) is, of course, a point of B";
from equation (35)

J.Dﬂ olx, ¥)D; D, glx, y) dx dy = z hoglay). (37)
=1

From the delinition of Dirac’s delta function and letting (1

— a;) = da; and 1 = (x, v) be a point of R, then the right-hand

side can be writlen as

Y digla) = (X L8, 0.
i=-1 i

from which (Gel'fand and Shilov. 1964)

2 ADDo, DD, g> = T (D}Dio. gd = (Ala. g)

.k gk
= () M8, 0. (38)
and finally
Ao = Y A, (39)
=]

Equation (39) is the Euler-Lagrange equation of the functional
(32).

Boundary conditions.—To determine the boundary con-
ditions, we consider equation (37). The kernel of the bigradient
is the set of all polynomials of first degree in R2 I g is an
element of such a kernel, then

E l, yla) = () (i)
=1

where y is a bidimensional polynomial of the first degree
Since the plate deformations a; have coordinates (x;, ¥ then
equation (40) can be expressed as

Y A=0: Y =0 (41

Equations (39) and (41) determine the deformation function o

¥ hix; =0;

Az )
]

T(AYO) Az o)

.

T'0)

-1
Ty)
1

FiG. 3. Transformation A between spaces X and Z is defined in order to impose boundary conditions oh the deformed.
interpolating surface. Transformation T is defined between spaces X and Y in order to minimize the norm in Y-space
(ie.. the curvature). z, is the set of observational (ie., field) values. 47'(0) is the kernel of the A transformation and
A7 Yzp) is the lincar variety representing all the functions arising from z,. v. is the element of the Y-space that belongs
to the linear variety T(A ~(z,)) and is closest to the zero of such a space. 7~ (0} is the kernel of the T-transformation

and T~ '(y.) s the linear variety that arises from y.. o is the required solution.
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spline. Equation (39) is known as the biharmonic equation: to
find its solution. we consider the function (Aronszajn, 1950)

1 1
=+ [ef? tog 1] (42)

with 1 = (x. ¥). Then
Alll =8
which means that [i(t) is a solution of the biharmonic equa-
tion. We now consider the function
=Yy hd,*H, (43)
where » means convolution; then
A=Y L5, * AH=Y ,8,+8=3 L3,.

We have shown that the function u is a solution of the hihar-
monic equation. The general solution is the sum of u plus a
polynomial of first degree. which s the kernel of the hibar-
monic operalor.

Writing these results in matrix form, the interpolating func-
tion ol(1) that minimizes the functional (32) is given by
(Duchon, 1975)

oft) = ¥ Kt — t) +u;x + ayy + ty, (44)
=1
with
P =a2+1l.

t=(x. ¥ K(t) = |t]? log |t]*:

The coeflicients A, ... A,. ;. 4, @, satisly the equations,

KA + Ea =1z,

and (45)
E'A=0,
with
1 X3, N
E L 1 .\':3 Vi .
| \,, Vi
K=(k) ky=ki'=0) i#ji kj=0;
and
A a,
s
A= - a=| U,
X @

Method of projections.—The matrix system of equations (43)
is simplified by the method of projections (Paihua and Utrera,
1976). Consider the vectorial subspace of R" defined as

E =y tase 0)ER = a+ b+ eyi= 1. .. i}
Each vector in the subspace has components formed by first-
degree polynomials generated by the column vectors of matrix

E. Since the vectors

u, = (1.1 1)
R T -
(46)
and
= (N5 Yawses [ i

are linearly independent and generate the space E. they are
then a basis of such a space. We gencrale an orthogonal basis
by the Gram-Schmidt procedure (e.g.. Nering, 1963). Let
V=(V,¥:. %)
be the components of the basis with
v ="H’\;‘-'~ vy =va/lval. ¥y =vy/Ival.
and with
¥, =y,
vy =, — (U, V)V,
1 I {47)
and
vy =y = (uy, vV, = Uy, V)Y,
E appears in the two  cequations numbered (45). Fur-

thermore,

E'A =10 {48)

implies that A is in the subspace orthogonal to k (ie., F = E*),
thus projections cun be used Lo simplify equations (45).
Since the column vectors of V are orthogonal. then the
orthogonal projection of B" onto £ is given by
Q=YY"

while the projection of B" onto the orthogonal subspace Fis
given by

P=1-0Q
Equations (45) can be projected by applying P
PKA + PEa =Dz (49)

since. according 1o equation (48). A is in E. Then the projec-
tion of A onto F must be A, or

PA=A.
Thus,
PKPA + PEx = Pz

However. the projection of the vectors of E onto F must also
be zero. i.c.,

PE=0
Thus
PRPA =Pz
The system of equations (43) has been reduced to
AA=h
and (50
PA = A

whete A = PRPand b= Pz

The problem now consists of finding a A® that is a solution
of eguation (50), and then projecting it ‘onto F. From the
computational paint of view there is a result that further sim-
plifies the solution. The matrix A is positive definite (Paihua
and Utrera. 1976). and therefore we can use Cholesky’s algo-
rithm to solve the system (50). The solution of the cocfTicients
A of the interpolating function o is now accomplished for the
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thin-plate approach. Next we need to solve for the coelficients
e.
Starting from

Ex=z2-KA

and using the equivalent matrix of E with column vectors
orthonormalized by the Gram-Schmidt method, the above
equition can be written

Va

z — KA.
Thus.

&= ~VT[KA - 1],

and using the orthonormal basis [¥,. ¥,, ¥,]. we have
o, = n8y (Vs Vi) — {¥y, ¥3) + 8y,

ay = nay/{¥y. V30
(51)
and

1
a, = a, _;;('-'2- uy) @y = (¥, V) - a,.

Thus equations (50) and (51) constitute the complete solu-
tion of the cocfficients of the functionals in equation (32). We
now summarize the computational steps necessary to find the
interpolating function o.

(1) Calculate the matrix K.

(2) Obtain v,. ¥,. ¥,. and v, v,, vy by the Gram-Schmidt
method.

{3) Calculate the matrix A = PKP by Cholesky lacloriza-
tion.

(4) Project zonto § o obtain b = Pz

(5) Find A by solving the system AA = b.

(6} Project Aonto[: A* = PA.

{(7) Compute a,, &, . oy by means of equation (51).

Since the total number of points can be subdivided (Paihua
and Utrera, 1976) to obtain the solution of the system in step
(5). the total number of points can be made arbitrarily large.

Finally, we stress that the kernel (42) of the biharmonic
equation (39) is just one of the possible solutions for such an
equation. Another possibility is. for instance, the pseudocubic
splines where

Kit) = |1]*2.

However, Campos ct al. (1983) stated that pscudocubic splines
vield poorer results than the thin-plate approach, especially in
places which lack measurements in a given region.

The finite-difierence approach

This method belongs to the numerical surfaces classification
and also deals with curvature minimization under the thin-
plate approach; however, curvature here is approximated
(Briggs. 1974) by

M~

4 :

Cm Y (Cyr. (52)
=1 j=1

where C;; is the curvature in (v;. v;). Let u;; = u(x;. v,) be the

displacement of the plate in (x;. v;). C;; is then a function of «;,

and nearby grid values: the total curvature depends upon the

precision with which the curvature is represented in 1. In

B e I

order to minimize equation (52), the partial derivatives of ¢
with respect to w;; must equal zero (Sticfel, 1963).

iy J=ds .
This results in a set of relations between the neighboring grid
points. with one relation per point.

Two general curvature descriptions are needed: (1) for
points on the rcgular grid, with spacing h which also have
expressions for the corners, edges, and intermediate points. In
the latter case, for instance, we have

Coy=ay g+ oy + U jay + U oy — dug)/h? (54
{2) For points not on the grid,
4 a4
Ci= X by —uw; Y b+ byw,. (55)
k=1 k=)

The cocficients b, , k = 1..... § arc calculated from the Taylor
scrics expansion of the points.

lf.':.'\'o"'él.yn"“rh:. k=1,....5
and by taking five i, values of equation (55) as
(he =h) (0, =h). (=h 0. (=h h). and (&. .

where w, is the nearby observation value.

Equation (55) is the expression for points outside the grid
Substituting equations (54) und (55) into equation (33). we
obtain a system of linear equations that allows calculation of
interpolated points.

The accuracy of this method depends upon the precision
with which the curvature is approximated, particularly fuy
points outside the grid. If the grid spacing is large. or if there
are few points in a given region, the Taylor series expansion i
less approximate. The method may show convergence prob.
lems when the number of points is large or when the grif
spacing h is also large. Even without a direct comparison
based on modeled results between the finite-difTerence method
and the analytic solution, it is not diflicult to see that the
results of the former method tend to those of the latier us
h— 0. The field values are not as accurately reproduced by the
finite-difference method as they are by the analytic snluimn_
however, the former is less costly and faster.

NUMERICAL EVALUATIONS 7

A quantitative comparison is possible between the various
interpolation techniques following the procedure established
in Rasmussen and Sharma (1979). They used geomagnei
models to compute actual field values in specified position.
interpolations at such points with parametric and non
parametric methods allow numerical comparisons between
them. They computed the corresponding mean crror. may
mum error, and standard deviation in percentage with respect
to the largest field value of the anomaly, concluding that non.
parametric methods yield figures approximately 50 percent
better than parametric methods. They point out. however, that
the latter take 50 percent less compuler time.

Following this trend, and reproducing the model prisms
used by the above authors, we carried oul a numerical evalu.
ation for the strictly bidimensional thin-plate approach. The
models consist of three dikes of equal length (16 kmj and
widths of 4, 8, and 16 km buried at depths of 0.25, 0.50, and
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1.0 km. We assumed a4 magnetic susceptibility of 0.003 cgs and
a terrestrial field of 50 000 nT, with inclination 75 degrees and
declination of 0 degrees. Using a 3-D magnetic modeling pro-
gram. we gencrated 40 x 40 ficld values on the surface at | km
spacing: from these we obtained a subset of values spaced on
a regular grid at 2 km separation. The latter were used as
input for the thin-plate interpolation, with an interpolating
interval of 1 km. The matrix of cxact data was subtracted
from the matrix of interpolated data and the error matrix
(Table 1 was obtained). Table 2 shows the error evaluation
reported in Rasmussen and Sharma (1979) for the non-
parametric method  (ie, for the most  exact yuasi-
bidimensional algorithm). From these tables note that the
maximum diflference for the maximum error is 2.7 percent in
favor of the quasi-bidimensional method, while the standard
deviation and the mean errors are practically equal. This pre-
liminary comparison shows that on regular grids the methods

vield similar results.

Tables 3, 4, and 5 were computed with the thin-plate pro-
gram for random data distributions, which are the data sets
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pertinent to this discussion, For 300 random ficld™ data, we
generated the regular grid of 20 x 40 nodes (1 km apart) and
obtained Table 3.

Similarly. we obtained Table 4 from 600 random field dala
points, and Table 5 from 900 random field data points, all
generated with the above computer program. Note that accu-
racy strongly depends upon the number of initial random data
points with which the inlerpolating surface is generated. As an
example, for the prism of 4 km width buried at a depth of 0.5
km, the mean error is 0.67 percent for 300 random data
points, 0.37 percent for 600 random data points, and 0.24
percent for 900 random data points: the corresponding per-
centages for the maximum error are 26.7, 20.6, and 11.6. Fig-
ures 4a and 4b show, respectively. plots of the pereent maxi-
mum error and the pereent standard deviation versus the field
gradient in nanoteslas per kilometer for the dike of 4 km
width buried at a depth of 1 km. It is shown that the error
increases when the gradient becomes more pronounced (ie.,
when the prism is shallower) and decreases when the number
of input data points increases. The maximum error in the 900

Table 1. Errors between field values and interpolated data from thin plate approach (800 points on regular grid).

Mean Max, Max.

Depth Width Error Yo Error Yo S.D. Vi Value Grad.
1.0 4 1.47 0.25 47.36 8.06 4.60 0.78 587 240
1.0 8 1.74 0.25 48.44 7.01 5.01 0.72 690 265
1.0 16 2.17 0.29 55.06 7.56 5.45 0.74 727 274
0.5 - 313 0.40 106.35 13.30 10.30 1.32 778 459
0.5 8 1.78 0.44 108.45 12.72 11.27 1.32 852 479
0.5 16 4.70 0.53 111.99 12.78 12.02 1.37 876 476
0.25 4 4.50 0.50 160.50 18.02 15.08 1.69 890 759
0.25 8 5.52 0.58 165.13 17.48 16.51 1.74 944 778
0.25 16 6.94 0.72 167.25 17.41 17.66 1.83 960 793

Table 2. Errors between field values and interpolated data from Rasmussen and Sharma (1979)
(800 points on regular grid).

Mean Max. Max.

Depth Width Error Yo Error Y S.D. Yo Value Grad.
1.0 4 0.68 0.12 25.06 4.39 2.68 047 571 237
1.0 8 1.12 0.16 21.24 3.03 343 0.49 701 259
1.0 16 2.09 0.28 20.94 2.80 4.78 0.64 748 263
0.5 B 1.39 0.18 74.28 0.54 6.75 0.87 T3 458 -
0.5 8 238 0.28 71.65 8.43 9.26 1.09 850 477
0.5 16 4.53 0.51 71.74 8.07 13.06 1.47 889 473
0.25 - 2.40 0.27 141.67 15.3 12.87 1.39 926 748
0.25 8 4.67 047 141.29 14.2 18.00 1.81 995 758
0.25 16 8.95 0.87 169.78 16.5 62.15 6.04 1029 761

Table 3. Errors between ficld values and interpolated data from thin platc approach (300 random data).

Mean Max. Max.

Depth Width Error Yo Error Vs S.D. Yo Value Grad.
1.0 4 244 0.41 87.28 14.86 5.33 0.90 587 240
1.0 8 339 0.49 74.16 10.74 5.80 0.85 690 265
1.0 16 5.94 0.81 119.30 16.39 9.11 1.25 727 - 274
0.5 4 5.25 0.67 207.65 26.66 12.19 1.56 778 459
0.5 8 7.53 0.88 173.92 20.41 14.40 1.69 852 479
0.5 16 12.79 1.46 23230 26.51 20.70 2.36 876 476
0.25 4 8.17 0.91 339.40 33.12 20.05 2.25 890 759
0.25 8 12.09 1.28 269.60 28.45 24.56 2.60 944 778
0.25 16 20.24 2.10 35292 36.73 13.94 3.53 960 793
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Table 4. Errors between ficld values and interpolated data from thin plate approach (600 random data).
) Mean Max., Max.
Depth Width Error Yo Error Yo S.D. Yo Value Grad.
1.0 4 1.19 0.20 67.97 11.57 3.28 0.55 587 240
1.0 8 1:51 0.21 42.14 6.10 3.26 0.4 690 265
1.0 16 24 0.32 42.0 5.77 3.64 0.50 727 274
0.5 B 290 0.37 160.08 20.55 8.52 1.09 778 459
0.5 8 380 0.45 110.9 13.02 9.18 1.07 852 479
0.5 16 5.7 0.65 1074 12.26 10.08 1.15 876 476
0.25 4 5.04 0.56 247.19 27.7 1592 1.7 890 749
0.25 8 7.01 0.74 220.13 23.31 17.9 1.90 944 778
0.25 16 10.87 .13 215.9 224 20.6 2.15 960 793
Table 5. Errors between ficld values and interpolated data from thin plate approach (900 random data).
Mean Max. Max.
Depth Width Error u Error Y S.D. Y Value Grad.
1.0 B 0.71 0.12 42.25 19 2.05 0.35 587 240
1.0 8 0.86 0.12 21.69 3.14 1.85 0.26 690 265
1.0 16 1.32 0.18 20.96 2.88 203 0.27 T2 274
0.5 B 1.87 0.24 90.50 11.62 5.96 0.76 778 459
0.5 8 213 0.25 72.10 8.46 5.36 0.63 852 479
0.5 16 182 0.43 72.19 8.24 6.88 0.78 876 476
0.25 4 3.86 043 187.06 21.00 12.87 1.44 890 749
0.25 8 213 0.25 72.10 8.46 5.36 0.63 852 778
0.25 16 84l 0.87 17.95 18.6 16.82 1.75 960 793
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FiG. 4. (a). Percent maximum error versus magnelic field
gradient for a dike 16 km long. 4 km wide. 30 km high. and
buried at a depth of 1 km. The error increases when the gradi-
ent becomes more pronounced and decreases when the

number of input data increases.

FiGi. 4 (b). Standard deviation versus magnetic field gradien
for the same prism as above.
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Fi1G. 6. Interpolation
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Fii. 7. Interpolation of the data set in Figure 5 on a regular grid of 65 x 103 points with the thin plate approach, plus
linear interpolations between the regular grid points for final contouring yields a smoother aspect to the map. The
same sct of coeMcicnts as those in Figure 6 were used for the analytical computations.
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FiG. 8. The regular grid of 17 x 26 of Figure 6 was densificd by means of the tensorial product algorithm to a
113 x 276 regular grid plus linear interpolations for final contouring. Data trends are similar to those in Figure 7. but
this map is smoother. Notice the diflference in details between the two maps.
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lytical solution are the most accurate methods of interpolating
random data. However, they are also the most expensive
methods.

A quantitative analysis of interpolation errors suggests that
a combination of methods may work satisfactorily and eco-
nomically. Starting from a set of random data a regular grid is
produced with a strictly bidimensional algorithm; the data
density of the interpolated data is approximately the same
value as that of the random data. The regular grid can next be
used as input of a quasi-bidimensional algorithm in order to
further densify the data. Actual contouring is performed last
by means of a fast, linear algorithm operating on a dense grid.
An actual example involving 327 randomly distributed points
within an irregular area and bounded by a rectangle is used to
illustrate some of the problems involved in automatic con-
touring of geophysical data sets.
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