MACHINE CONTOURING USING MINIMUM CURVATURE!

IAN C. BRIGGS*

Machine contouring must not introduce information which is not present in the data. The one-dimensional spline fit has well defined smoothness properties. These are duplicated for two-dimensional interpolation in this paper, by solving the corresponding differential equation. Finite difference equations are deduced from a

principle of minimum total curvature, and an iterative method of solution is outlined. Observations do not have to lie on a regular grid. Gravity and aeromagnetic surveys provide examples which compare favorably with the work of draftsmen.

INTRODUCTION

Contour maps are useful in the evaluation and interpretation of geophysical data. With the rapid increase in the rate of acquisition of data, a computer is an attractive means of producing contour maps.

Although errors occur in most geophysical observations, contour maps are usually drawn so that the imaginary surface on which the contours lie passes exactly through the observations. The problem of interpolation is then either: (a) to define a continuous function of the two space variables, which takes the values of the observations at the required, perhaps random, positions; or (b) to define a set of values at the points of a regular grid, so that a grid point value tends to an observational value if the position of the observation tends to the grid point. A solution to (a) gives a solution to (b), but a solution to (b) may not give a solution to (a). The solution to (b) is the one most commonly used as an input to a program which draws contour lines.

Methods for the production of contour maps have been published by Crain & Bhattacharyya (1967), Smith (1968), Cole (1968), Pelto et al (1968), and McIntyre et al (1968). These methods are variations of either weighting or function fitting or both, and give a solution to problem (a) and, hence, (b). Crain (1970) has provided a review of these methods.

This article describes a method for finding a solution to problem (b) without first finding a solution to problem (a). The solution also happens to be the smoothest. This attribute gives confidence in the use of the method and explains the quality of the resulting contour maps.

The problem of interpolation in one dimension has led to the piecewise polynomial fit, or spline (Ahlberg et al, 1967). A continuous function is found for all values of the independent variable. This method has been extended to two dimensions (De Boor, 1962), and used by Bhattachryya (1969) to give a solution to problem (a).

However, if the observation points in two dimensions are randomly situated, the fitting of piecewise two-dimensional polynomials to polygons seems difficult, although it is possible if the set of polygons are topologically equivalent to a rectangular grid (Hessing et al, 1972).

The optimum properties of the spline fit can be obtained in both one and two dimensions by solving the differential equation equivalent to a third-order spline. This is the equation which describes the displacement of a thin sheet in one or two dimensions under the influence of point forces. The 'boundary conditions' are not only at the ends or boundary, but within the region of interest. The solution is forced to take up the value of the observation at the point of observation, in one or two dimensions. The equation is

[†] Manuscript received by the Editor February 21, 1973; revised manuscript received September 10, 1973.

^{*} Bureau of Mineral Resources, Canberra, A.C.T., Australia.

^{© 1974} Society of Exploration Geophysicists. All rights reserved.

solved numerically, and thus gives a solution to problem (b).

The smoothness properties follow from the method of deducing the difference equations, and the quality of the resulting contour map is thus determined. The solution of the set of difference equations is a time-consuming process, but the iteration times on the computer have been reduced and can be reduced still further.

THE METHOD

The differential equation

The thin metallic strip or sheet is bent by forces acting at points so that the displacement at these points is equal to the observation to be satisfied. Let u be the displacement, x, y the space variables, and let forces f_n act at (x_n, y_n) , $n = 1, \dots, N$, where the observations are w_n , then (Love, 1926)

$$\frac{d^4u}{dx^4} = f_n, x = x_n,$$

$$= 0 \text{ otherwise,}$$
(1)

in one dimension and

$$\frac{\partial^4 u}{\partial x^4} + 2 \frac{\partial^4 u}{\partial x^2 \partial y^2} + \frac{\partial^4 u}{\partial y^4}$$

$$= f_n, x = x_n, y = y_n,$$

$$= 0 \text{ otherwise,}$$
(2)

in two dimensions. The units are dimensionless. A condition on the solution is that $u(x_n) = w_n$ or $u(x_n, y_n) = w_n$. In one dimension, u, $\partial u/\partial x$, and $\partial^2 u/\partial x^2$, the curvature, are continuous across the point where the force is acting, but $\partial^3 u/\partial x^3$ is discontinuous across such a point and the value of the discontinuity is equal to the force acting at that point (Love, 1926). A solution in one dimension is given by a third-order polynomial

$$u = a_0 + a_1 x + a_2 x^2 + a_3 x^3,$$

for each segment between the points where the forces are acting. The coefficients a_0, \dots, a_3 are found by using the continuity conditions above. This solution is a cubic spline.

In two dimensions the solution of equation (2) is to be used in place of the two-dimensional, third-order piecewise polynomial fit.

Boundary conditions

The most suitable condition for the ends of the strip or edge of the thin sheet is that of freedom. For a strip, the region between the end and the extreme observation will have a linear form, and for a sheet, the area between the edge and the observations will tend to a plane as the sheet becomes larger.

For one and two dimensions, at the ends or edge, the force is zero, and the bending moment about a tangential line is zero. For one dimension, these conditions give

$$\frac{\partial^3 u}{\partial x^2} = 0, \tag{3}$$

and

$$\frac{\partial^2 u}{\partial x^2} = 0, \text{ respectively.} \tag{4}$$

For two dimensions, they give

$$\frac{\partial}{\partial x} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0, \tag{5}$$

where the normal to the edge is in the x-direction, and give (4) also. The condition that

$$u(x_n) = w_n,$$

or

$$u(x_n, y_n) = w_n, (6)$$

is also a "boundary" condition.

Equation (1) with boundary conditions (3), (4), and (6) or equation (2) with boundary conditions (5), (4), and (6) are solved numerically.

Finite difference equations

Equation (2) can be derived from the principle of minimum curvature. Difference equations can be formed from equation (2) using. Taylor's theorem (Young, 1962) or directly from the principle of minimum curvature. The boundary equations are more easily deduced by the latter means. Equations to be used when an observation does not lie on a grid point are more easily deduced by the former.

Consider the total squared curvature

$$C(u) = \int \int \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)^2 dx dy.$$
 (7)

It must be shown that if a function u(x, y) makes C an extremum, then it obeys equation (2), and also that if a function u obeys equation (2) then it minimizes C. Let u(x, y) be a function on a region in R^2 with boundary B. Let u make C an extremum. Let z(x, y) be a function of u(x, y) and an arbitrary function g, with

$$g = 0$$
 and $\frac{\partial g}{\partial n} = 0$ on B ,

where $\partial/\partial n$ denotes a derivative along the normal to B,

$$z(x, y) = u(x, y) + \epsilon g(x, y),$$

where e is a real number.

Then

$$\frac{\partial C(z)}{\partial \epsilon}\bigg|_{\epsilon=0} = 0,$$

and this must hold for all functions g(x, y). Writing ∇^2 for

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

$$C(z) = \iint (\nabla^2 u)^2 dx dy$$

$$+ 2\epsilon \iint \nabla^2 u \nabla^2 g dx dy$$

$$+ \epsilon^2 \iint \nabla^2 g dx dy,$$

and

$$\left. \frac{\partial C(z)}{\partial \epsilon} \right|_{\epsilon=0} = 2 \int \int \nabla^2 u \nabla^2 g dx dy.$$

Using Green's theorem, (Courant and Hilbert, 1953) the right-hand side gives

$$2\bigg(\int\int g\nabla^{2}(\nabla^{2}u)dxdy + \int_{B}\nabla^{2}u\frac{\partial g}{\partial n}dl - \int_{B}g\frac{\partial}{\partial n}(\nabla^{2}u)dl\bigg).$$

The last two integrals vanish and leave

$$\int \int g \nabla^2 (\nabla^2 u) dx dy = 0.$$

Since this must hold for all g, $\nabla^2(\nabla^2 u) = 0$. Conversely, if u obeys equation (2), and if z is any other function on R^2 , with z = u, and $\partial z/\partial n = \partial u/\partial n$ on B, we can show that $C(u) \leq C(z)$. Consider

$$C(z) - C(u) = \int \int \left[(\nabla^2 z)^2 - (\nabla^2 u)^2 \right] dx dy.$$

The right-hand side gives

$$\iint (\nabla^2 z - \nabla^2 u)^2 dx dy'$$

$$+ 2 \iint \nabla^2 u (\nabla^2 z - \nabla^2 u) dx dy.$$

The last term gives upon the use of Green's theorem

$$2\bigg(\int\int\int (z-u)\nabla^{2}(\nabla^{2}u)dxdy$$

$$+\int_{B}\nabla^{2}u\frac{\partial}{\partial n}(z-u)dl$$

$$-\int_{B}(z-u)\frac{\partial}{\partial n}(\nabla^{2}u)dl\bigg).$$

The integrals are zero; C(u) is then always less than or equal to C(z).

The principle of minimum curvature is used to deduce the normal difference equations. The total squared curvature (7) is constructed directly in terms of elements of the set of grid point values

$$u_{i,j} \equiv u(x_i, y_j),$$

 $x_i = (i-1)h, y_j = (j-1)h,$
 $i = 1, \dots, I, j = 1, \dots, J,$

where h is the grid spacing. The discrete total squared curvature is

$$C = \sum_{i=1}^{I} \sum_{j=1}^{J} (C_{i,j})^{2}, \qquad (8)$$

where $C_{i,j}$ is the curvature at (x_i, y_j) . $C_{i,j}$ is a function of $u_{i,j}$ and some neighboring grid values; the exact set depends on the accuracy with which the curvature is to be represented.

To minimize the sum C, the functions

$$\frac{\partial C}{\partial u_{i,j}}, \quad i=1,\cdots,I; j=1,\cdots,J, \quad (9)$$

are set equal to zero (Stiefel, 1963). The resulting equations determine a set of relations between neighboring grid-point values, one relation for each grid point.

In one dimension the simplest approximation to the curvature at x_i is

$$(u_{i+1} + u_{i-1} - 2u_i)/h^2$$
,

and in two dimensions at (x, yi), it is

$$C_{i,j} = (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j})/h^2.$$
(10)

Along edges and rows one from the edge, and near corners, different expressions for the curvature are used. For example, at an edge j=1,

$$C_{i,j} = (u_{i+1,j} + u_{i-1,j} - 2u_{i,j})/\dot{h}^2$$
. (11)

These special cases are also included in the total for C. Away from the edges, (10) shows that a grid point value $u_{i,j}$ occurs in the expressions for,

$$C_{i,j}, C_{i+1,j}, C_{i-1,j}, C_{i,j+1}$$
 and $C_{i,j-1}$.

Thus, only these need to be considered when equation (10) is used. Using (8), (9), and (10) the common difference equation for the biharmonic equation results:

$$u_{i+2,j} + u_{i,j+2} + u_{i-2,j} + u_{i,j-2} + 2(u_{i+1,j+1} + u_{i-1,j+1} + u_{i+1,j-1} + u_{i-1,j-1}) - 8(u_{i+1,j} + u_{i-1,j} + u_{i,j-1} + u_{i,j+1}) + 20u_{i,j} = 0.$$
(12)

For the edge j = 1, the difference equation is

$$u_{i-2,j} + u_{i+2,j} + u_{i,j+2} + u_{i-1,j+1} + u_{i+1,j+1} - 4(u_{i-1,j} + u_{i,j+1} + u_{i+1,j})$$
(13)
+ $7u_{i,j} = 0$.

A complete set is given in Appendix B.

The point boundary conditions (6) are used by setting $u_{i,j} = w_n$ wherever $u_{i,j}$ occurs in the set of linear equations, and by removing those equations which correspond to these fixed grid points.

Observation not on a grid point

If an observation does not coincide with a grid point another difference equation is required for grid points which are the vertices of the grid square in which the observation falls. The observation point becomes part of the grid. The equation used is a special case of a general method for using a random grid for the numerical solution of differential equations. The general method is used by letting one grid point, the observation, be on an irregular grid; the remaining neighbors are on the regular grid in the difference equation relating a grid-point value to its neighbors.

Equation (2) is equivalent to

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = 0.$$

If

$$C_{ij} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \quad \text{at } (x_i, y_j), \quad (14)$$

equation (14) gives the difference equation (Young, 1962),

$$C_{i+1,j} + C_{i-1,j} + C_{i,j+1} + C_{i,j-1} - 4C_{i,j} = 0.$$
(15)

If equation (10) is used in equation (15), equation (12) results. However, we need an expression for $C_{i,j}$ which uses values of u at discrete points not lying on a regular grid.

Let u be a continuous function on the real twodimensional space R^2 and let (x_0, y_0) be in R^2 . If the set of points

$$\{x_0 + \xi_k, y_0 + \eta_k\}, \quad k = 1, \dots, 5$$

are also in R^2 , then for sufficiently small ξ_k , η_k and if u has sufficiently many derivatives,

$$u_k \equiv u(x_0 + \xi_k, y_0 + \eta_k), \quad k = 1, \dots, 5,$$

is approximated by

$$u_{0} + \xi_{k} \frac{\partial u}{\partial x} \Big|_{0} + \eta_{k} \frac{\partial u}{\partial y} \Big|_{0} + \frac{1}{2} \xi_{k}^{2} \frac{\partial^{2} u}{\partial x^{2}} \Big|_{0}$$

$$+ \xi_{k} \eta_{k} \frac{\partial^{2} u}{\partial x \partial y} \Big|_{0} + \frac{1}{2} \eta_{k}^{2} \frac{\partial^{2} u}{\partial y^{2}} \cdot (16)$$

To find an expression for

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \quad \text{at } (x_0, y_0),$$

both sides of equations (16) are multiplied by a real number b_k and a sum is made over k, so that

.)

 $\sum_{k=1}^{5} b_k u_k = u_0 \sum b_k + \frac{\partial u}{\partial x} \Big|_0 \sum b_k \xi_k$ $+ \frac{\partial u}{\partial y} \Big|_0 \sum b_k \eta_k$ $+ \frac{1}{2} \frac{\partial^2 u}{\partial x^2} \Big|_0 \sum b_k \xi_k^2$ $+ \frac{\partial^2 u}{\partial x \partial y} \Big|_0 \sum b_k \xi_k \eta_k$

If the bk are chosen such that

$$\sum b_k \xi_k = 0, \qquad -\sum b_k \eta_k = 0,$$

$$\sum b_k \xi_k^2 = 2, \qquad \sum b_k \xi_k \eta_k = 0, \quad (18)$$

$$\sum b_k \eta_k^2 = 2,$$

 $+\frac{1}{2}\frac{\partial^2 u}{\partial v^2}\Big|_{\Omega}\sum b_k \eta_k^2.$

then

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \quad \text{at } (x_0, y_0)$$

is approximated by

$$\sum_{k=1}^{5} b_k u_k - u_0 \sum_{k=1}^{5} b_k. \tag{19}$$

The matrix

$$\begin{pmatrix}
\xi_1 & \xi_2 & \xi_3 & \xi_4 & \xi_5 \\
\eta_1 & \eta_2 & \eta_3 & \eta_4 & \eta_5 \\
\xi_1^2 & \xi_2^2 & \xi_3^2 & \xi_4^2 & \xi_5^2 \\
\xi_1\eta_1 & \xi_2\eta_2 & \xi_3\eta_3 & \xi_4\eta_4 & \xi_5\eta_5 \\
\xi_2^2 & \xi_3^2 & \xi_4^2 & \xi_5^2 \\
\eta_1 & \eta_2 & \eta_3 & \eta_4 & \eta_5
\end{pmatrix} (20)$$

must be nonsingular, for the b_k to exist. For the present purpose, where one u_k lies off the regular grid, and the remaining four lie on the regular grid, with

$$\xi,\,\eta=h,\,0,\,-h,$$

a suitable set is

$$(h, -h), (0, -h), (-h, 0), (-h, h), (\xi_5, \eta_5),$$

with $\xi_b > 0$ and $\eta_b > 0$. Thus, for an expression for the curvature at (x_i, y_j) , we can use

$$C_{i,j} = \sum_{k=1}^{4} b_k u_k - u_{i,j} \sum_{k=1}^{5} b_k + b_5 w_n, \quad (21)$$

where {uk} is

$$u_{i+1,j-1}, u_{i,j-1}, u_{i-1,j}, u_{i-1,j+1},$$

and w_n is the nearby observation value.

Equation (21) can be used in (15) to give a linear equation relating a grid point to neighboring grid points and an observation. This is used in place of equation (12).

Iteration matrix

The set of linear algebraic equations (12), (13), and others are best solved iteratively (Young, 1962). Given an approximate set of $u_{i,j}$, a new set is obtained by making $u_{i,j}$ the subject of equations (12) and (13) and others. For example, (13) gives

$$u_{i,j}^{p+1} = \left[4(u_{i-1,j}^{p} + u_{i,j+1}^{p} + u_{i+1,j}^{p}) - (u_{i-2,j}^{p} + u_{i+2,j}^{p} + u_{i,j+2}^{p} + u_{i,j+2}^{p} + u_{i-1,j+1}^{p} + u_{i+1,j+1}^{p})\right]/7,$$
(22)

where the index p indicates the pth iteration. Starting values must be given, and one suitable method is to use the value of the nearest observation or a weighted sum of neighboring observations.

Iteration matrices which give faster rates of convergence than that defined by (22) are known (Young, 1962; Parter, 1959), but are not described here. The proof of the existence of a solution to the linear equations is omitted (Stiefel, 1963).

Smoothness properties

The measure of smoothness, $C = \sum (c_{i,j})^2$ is a function of h and the precision of the approximation for $C_{i,j}$. Because the linear equations are deduced from the principle of minimum C, for a given h and for a given definition of curvature, the resulting grid-point surface is smoother than, or as smooth as, any other grid-point surface. Two contour maps produced by different means but using the same data, can be compared for smoothness by digitizing the map, if necessary, and calculating the total curvature C. The map with the lower value of C is usually the more acceptable, and delineates trends more clearly.

Nothing will be said here about the convergence of the grid point values or of C, as the grid spacing tends to zero. However, for a given grid spacing, the method gives the smoothest possible contour map, and it can be used with some confidence as a representation of the given data.

Drawing lines

There are many different methods of drawing the contours once the grid (Crain, 1970) surface has been found. The method used in the examples involves a four-point cubic interpolation between grid points to find contour cuts, and then a cubic spline to join the cuts. The observations art not used. This is the weak link in the present scheme. Improvements can be made by using the observations or by using two-dimensional cubic interpolation over a grid square. The overall success of the application of minimum total curvature warrants the undertaking of further work in the improvement of details.

EXAMPLE

For each map the time for one iteration for one grid point was approximately 0.4 msec using a CDC 3600 computer. Up to 260,000 grid points have been used to contour 60,000 observations at one time. To provide edge matching when an entire survey cannot be contoured at once, data beyond the area to be contoured are used.

The iterations were discontinued when all significant relocation of contour lines had taken place.

Test cases

Two simple test examples are: (1) a one-dimensional set of data taken to lie on a straight line; and (2) a set of data points (at least four are necessary) taken to lie on a plane. In case (1) the

Table 1. The smoothest set of discrete values fixed at i=3, 5, 8.

i	v _i
1	-5.62
2	1.69
3	9.00
4	16.31
5	25.00
6	36.46
7	49.77
8	64.00
9	78.23
10	92.46

free grid points tend to values lying on the same straight line, and in case (2) the free grid points tend to values lying in the same plane.

Table 1 gives the values of a one-dimensional set of grid points which minimize the total curvature. Grid points at i=3, 5, 8 are fixed and the imaginary forces required to bend the spline act at these points. The difference equations used are given in Appendix A.

Table 2 gives the values of a two-dimensional set of grid points fixed at (7, 3), (8, 5), (5, 5), (8, 8), and (4, 8). This set of grid points minimizes the sum of the point curvatures defined by equation (10).

Table 3 gives the values of a two-dimensional set of grid points fixed at infinity and at x = .2, y = .3 where the observation is $(.2)^2 + (.3)^2 = .13$.

Table 2. The smoothest set of grid valves fixed at (7, 3), (8, 5), (5, 5), (8, 8), (4, 8).

1/1	1	2	3	4	5	6	7	8	9	10
1	-99.34	-89.96	-80.30	-70.10	-59.19	-47 40			-	
2	-84.07	-75.42	-66.30	-56.53		-47.48	-35.01	-21.93	-8.44	5.25
3	-69.07	-61.31	-52.89	500,5100,010,010,010,010,010,010,010,010	-45.95	-34.46	-22.12	-9.12	4.35	18.14
4	-54.66			-43.67	-33.48	-22.17	-9.86	3.21	16.80	30.84
5		-47.83	-40.14	-31.56	-21.83	-10.64	1.74	15.00	28.79	
1	-41.19	-35.18	-28.14	-20.19	-11.00	0.13	12.61	26.05		43.14
6	-29.03	-23.59	-16.97	-9.55	-0.68	10.25			40.14	54.87
7	-18.57	-13.42	-7.00	-0.14	8.40		22.80	36.46	50.85	65.94
8	-9.89	-5.04	0.86	2月夏3		19.37	32.15	46.16	60.85	76.25
9	-2.59	2.03	0000	7.61	16.00	27.31	40.50	55.00	70.01	85.74
10	4.00		7.55	14.29	22.95	34.23	47.63	62.51	78.20	94.48
10	4.00	8.15	13.01	19.37	28.03	39.44	53.34	69.00	85.67	102.78

Table \mathcal{F} . The smoothest set of grid valves fixed at infinity and x=.2, y=.3, with x=0, y=0 at (3, 3).

j	. 1	2	3	4	5
i	8.00	5.00	4.00	5.00	8.00
1	5.00	2.00	1.00	2.00	5.00
2	4.00	1.00	0.00	1.00	4.00
3	5.00	2.00	1.00	2.00	5.00
4	8.00	5.00	4.00	5.00	8.00

The condition at infinity is simulated by setting grid values at (x, y) to x^2+y^2 beyond a limit, and by not using the boundary difference equations. This table shows the results of using equation (21) for the case where an observation does not fall on a grid point. The grid points used are (-1, 1), (-1, 0), (0, -1), (1, -1), and the observation at (.2, .3). The matrix (20) is

1	-1	-1	0	1	.2
	1	0	-1	-1	.3
	1	1	0	1	.04
	-1	0	0	-1	.06
	1	0	1	1	.09

and the resulting coefficients b_k , $k=1, \dots, 5$ are .68, .60, .73, .48, and 2.67.

These are used in equations (21) and (15) to give a value for the grid point at x=0, y=0.

These and other higher-order surfaces test the method in general and the difference equations in particular. The illustrated examples use real data.

Almost uniform data

Figure 1 is the resulting contour map for gravimetric data sampled in mgal on a nominal 11 km

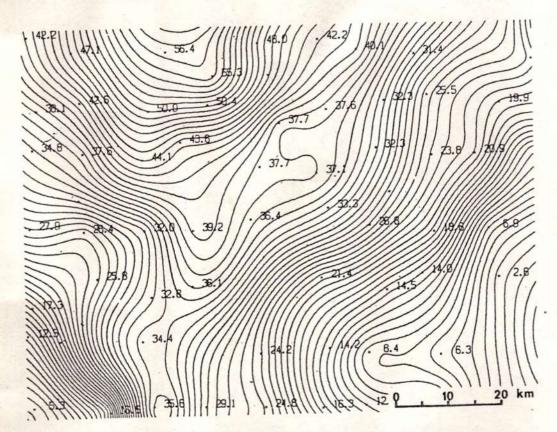


Fig. 1. Gravity data contoured at 1-mgal intervals using a grid spacing of 1.85 km.

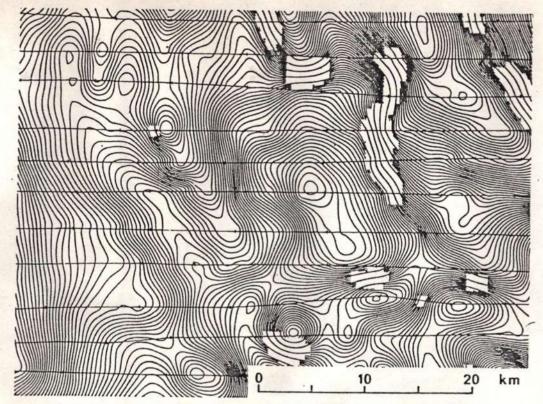


Fig. 2. Aeromagnetic data contoured at 10-gamma intervals using a grid spacing of 0.5 km.

network. The grid spacing was 1.85 km and the number of iterations was 90. The number of grid points was 1500. The smoothness of the interpolating grid surface is apparent. The shapes of contours for data for this type generally agree with those of draftsmen. Differences occur when the interpolating grid surface lies outside the range of a closed group of observations.

The deficiency in the line-drawing routine shows itself when the 50-mgal contour does not pass exactly through a 50-mgal observation.

Line data

A more difficult set of data to contour is one whose density of sampling is not isotropic. The data for the total intensity aeromagnetic maps of Figure 2 and Figure 3 were taken at 0.8 km intervals along flight-lines nominally 3.2 km apart and at a height of 650 m above ground. The grid spacing used in the contouring was 0.5 km and the number of iterations was 60. The number of grid points is 6000 in Figure 2 and 16,500 in Figure 3.

The general smoothness is satisfactory although a relatively rough profile along a line has an effect on the contours close to the flight-line, and this may not be desirable. The interpolation is not a product of one-dimensional splines. A section across the flight-lines is not the result of a one-dimensional spline. This may be a drawback in some cases, but enables trends not lying at right-angles to the flight path to be displayed.

CONCLUSION

The principle of minimum total curvature provides a method of two-dimensional interpolation which allows a computer to draw reasonable maps of geophysical data. The results are not always as a draftsman would have them, but are an adequate substitute in most cases.

ACKNOWLEDGMENT

The author wishes to thank the Director of the Bureau of Mineral Resources for permission to publish this paper.

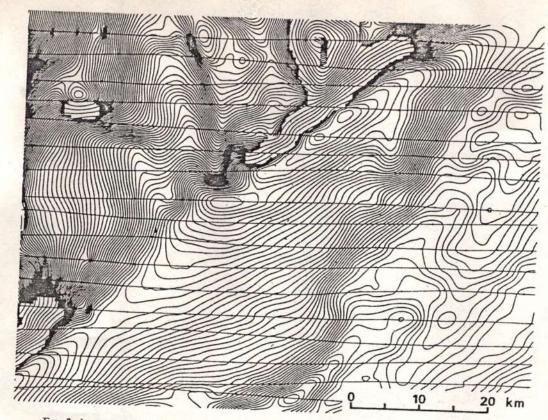


Fig. 3. Aeromagnetic data contoured at 10-gamma intervals using a grid spacing of 0.5 km.

REFERENCES

Ahlberg, J. H., Nilson, E. N., and Walsh, J. L., 1967, The theory of splines and their applications: New York, Academic Press.

Bhattacharyya, B. K., 1969, Bicubic spline interpolation as a method for treatment of potential field data: Geophysics, v. 34, p. 402-423.

Cole, A. J., 1968, Algorithm for the production of contour maps from scattered data: Nature, v. 220, p. 92-94.

Courant, R., and Hilbert, D., 1953, Methods of mathematical physics: New York, Interscience Publishers, Inc.

ematical physics: New York, Interscience Publishers, Inc.

Inc.

Crain, I. K., 1970, Computer interpolation and contouring of two-dimensional data: A review: Geoexplor., v. 8, p. 71-86.

Crain, I. K., and Bhattacharyya, B. K., 1967, Treatment of non-equispaced two-dimensional data with a digital computer: Geoexplor., v. 5, p. 173-194.

De Boor, 1962, Bicubic spline interpolation: J. Math. and Phys., v. 41, p. 212-218.

Hessing, R. C., Lee, H. K., Pierce, A., and Powers, E. N., 1972, Automatic contouring using bicubic functions: Geophysics, v. 37 p. 669-674.

Love, A. E. H., 1926, The mathematical theory of elasticity: Cambridge, University Press.

McIntyre, D. B., Pollard, D. D., and Smith, R., 1968, Computer programs for automatic contouring: Kansas Geol. Surv., Comput. Contr. no. 28.

Parter, S. V., 1959, On two-line iterative methods

for the Laplace and biharmonic difference equations:

for the Laplace and biharmonic difference equations: Num. Math., v. 1, p. 240-252.

Pelto, Chester R., Elkins, Thomas A., and Bovd, H. A., 1968, Automatic contouring of irregularly spaced data: Geophysics, v. 33, p. 424-430.

Smith, F. G., 1968, Three computer programs for contouring map data: Can. J. Earth Sci., v. 5, p. 324-327.

Stiefel, E. L., 1963, An introduction to numerical mathematics: New York, Academic Press.

Young, D., 1962, The numerical solution of elliptic and parabolic partial differential equations, in Survey of numerical analysis, edited by Todd, J.: New York, McGraw-Hill Book Co., Inc.

APPENDIX A

A set of difference equations for one-dimensional interpolation is given. The curvature used is

$$C_i = (u_{i+1} + u_{i-1} - 2u_i)/h^2$$
.

Normal

Away from the ends, use

$$u_{i-2} + u_{i+2} - 4(u_{i-1} + u_{i+1}) + 6u_i = 0.$$

At the end i=1, use

AUTOMATIC CONTOURING USING BICUBIC FUNCTIONS!

R. C. HESSING, HENRY K. LEE, ALAN PIERCE, AND ELDON N. POWERS*

A method is described for using a digital computer to construct contour maps automatically. Contour lines produced by this method have correct relations to given discrete data points regardless of the spatial distribution of these points. The computer-generated maps are comparable to those drawn manually.

The region to be contoured is divided into quadrilaterals whose vertices include the data points. After supplying values at each of the remaining vertices by using a surface-fitting technique, bicubic functions are constructed on each quadrilateral to form a smooth surface through the data points. Points on a contour line are obtained from these surfaces by solving the resulting cubic equations.

The bicubic functions may be used for other calculations consistent with the contour maps, such as interpolation of equally spaced values, calculation of cross-sections, and volume calculations.

INTRODUCTION

Contour-map displays of data are widely used in many engineering and scientific applications. In the petroleum industry, contour mapping by digital computer has been used as an effective tool to analyze geological and geophysical data and to depict subsurface structures. Thus, computer mapping is playing a vital role in petroleum exploration and production.

Several articles have recently appeared on automatic contouring (Morse, 1969; Cottafava and Le Moli, 1969; Pelto et al, 1968). Most automatic contouring schemes generate a regular grid prior to contouring. The original data points which do not lie on the grid are neglected after the grid has been constructed. Thus, contouring by this scheme works fairly well if the data are uniformly spaced. For irregularly spaced data, the grid approach may be unable to honor every data point, and the contour lines will fail to represent a surface which contains the original data points. This paper describes a method that honors every data point by constructing a smooth surface through the original data. The proposed method

makes use of multivariable curve interpolation by Ferguson (1964).

DESCRIPTION OF METHOD

Let D be any set of points $d_k = (x_k, y_k, z_k)$, $k = 1, 2, \dots, K$, obtained from a continuous function of two variables. In order to use the method suggested by Ferguson (1964), D must be a subset of an array $\{P_{n,m}\}$, $n = 1, 2, \dots, N$, $m = 1, 2, \dots, M$, arranged so that the structure obtained by connecting adjacent points by straight-line segments is topologically equivalent to an $N \times M$ planar rectangular grid.

The array $\{P_{n,m}\}$ is constructed by dividing the set D into "vertical" subsets V_1, V_2, \cdots, V_{M} which satisfy the following conditions:

- 1) If d_a is a member of V_m and d_b is a member of V_{m+1} , then $x_0 < x_b$.
- 2) If d_a and d_b are members of the same vertical subset V_m , the line connecting (x_a, y_a) and (x_b, y_b) must form an angle with the y axis that is less than $\pi/4$.
- 3) Each Vm contains at least one member of D.

Manuscript received by the Editor October 30, 1971; revised manuscript received January 12, 1972.

^{*} Amoco Production Company, Tulsa, Oklahoma 74102.

^{© 1972} by the Society of Exploration Geophysicists. All rights reserved.

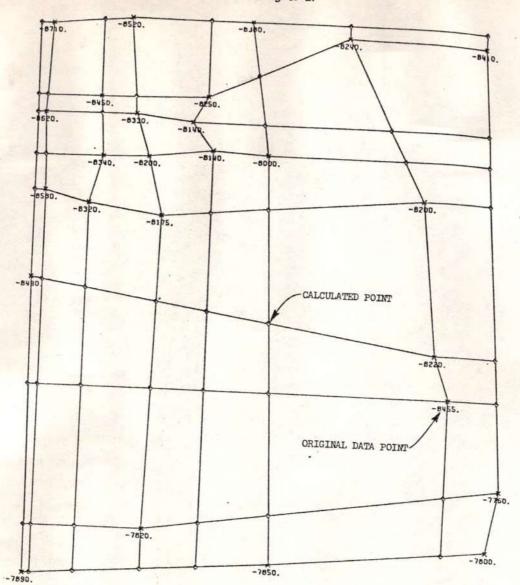


Fig. 1. Planar "grid" of sample data case.

4) If d_a is a member of V_1 or V_M it must also be on the boundary of the convex hull of D.

Similar conditions are used to divide the set D into "horizontal" subsets H_1, H_2, \cdots, H_N :

- 1) If d_a is a member of H_n and d_b is a member of H_{n+1} , then $y_a < y_b$.
- 2) If d_o and d_b are members of the same horizontal subset H_n , the line connecting (x_o, y_o) and (x_b, y_b) must form an angle with the x axis that is less than $\pi/4$.
- 3) Each H_n contains at least one member of D.
- 4) If d_a is a member of H_1 or H_N it must also be on the boundary of the convex hull of D.

For reasons of economy the number of these vertical and horizontal sets should be kept to a minimum; the number of such sets does not significantly affect the appearance of the map.

Now $I_{n,m} = H_n \cap V_m$ contains at most one element. If $I_{n,m}$ is nonempty, call the element it contains $P_{n,m}$. If $I_{n,m}$ is empty, a point must be

120

constructed that will satisfy requirements analogous to conditions 1) and 2) for V_m and H_n .

The x, y coordinates of a suitable point $P_{n,m}$ where $I_{n,m}$ is empty can easily be found by the solution of two linear equations involving line segments through data points in V_m and H_n . A sample data case depiciting the x, y locations of the $\{P_{n,m}\}$ array is shown in Figure 1.

At each point in the array $\{P_{n,m}\}$ which is not a data point, a z value is obtained by fitting a polynomial to the surrounding data points. A weighted least-squares fit is used. The weight assigned to each of the contributing data points is based on its distance from the point being generated and its position in relation to the other data points. The reciprocal of the square of the distance gives greater importance to nearby points, while relatively isolated data points are given more credence by diminishing the effect of clusters. After all of the nondata points in the array $\{P_{n,m}\}$ have been assigned values, they have the same status as the original data points. Determination of the weights is described in some detail below. A recent report by Shepard (1968) presents another approach to this type of interpolation problem.

Choices are first made for several fixed numbers whose use is described below: the number 4L of subdivisions of the circle; the number K+1 of nonzero levels of intermediate weights; the sequence $W_0 > W_1 > \cdots$, $> W_K > W_{K+1} = W_{K+2} = \cdots$, = 0 of such weights.

Now let $(x_{n,m}, y_{n,m})$ be a point at which a value is to be supplied and let (a_i, b_i, c_i) , $i = 1, 2, \dots, I$, be the data points. Let

$$d_i^2 = (a_i - x_{n,m})^2 + (b_i - y_{n,m})^2 \text{ and}$$

$$\theta_i = \tan^{-1}[(b_i - y_{n,m})/(a_i - x_{n,m})].$$

Suppose $1 \le i \le I$. For each l, $0 \le l \le L-1$, consider the four sectors

$$\pi l/2L \le \theta < \pi/2 + \pi l/2L,$$

 $\pi/2 + \pi l/2L \le \theta < \pi + \pi l/2L,$
 $\pi + \pi l/2L \le \theta < 3\pi/2 + \pi l/2L,$ and
 $3\pi/2 + \pi l/2L \le \theta < 0 \text{ or } 0 \le \theta < \pi l/2L,$

and let $J_{i,i}$ be the number of data points (a_j, b_j, c_j) such that θ_j and θ_i are in the same sector and $d_j^2 < d_i^2$. The weight of the point (a_i, b_i, c_i) is then

$$(1/d_i^2) \sum_{l=0}^{L-1} W_{J_{i,l}}.$$

It can now be seen that the dependence of the weights on L, K, and W_0 , W_1 , \cdots , W_K is quite complex. Over a period of time several values were tried for each of the parameters. Obviously computations increase with increasing L and K, yet L and K must be sufficiently large (and W_0 , W_1 , \cdots , W_K decreasing sharply enough) to provide a smooth transition when the process is repeated at nearby points. Empirical evidence has demonstrated that $W_0 = 1$, $W_1 = 1/2$, \cdots , $W_K = W_{K-1}/2$ and L = 10, K = 4 are reasonable values for the parameters.

Now a smooth surface (i.e., one with continous first-order partial derivatives) through the points of the array is constructed as a composite of surfaces, one surface for each quadrilateral determined by this array. For each point $P_{n,m} = (x_{n,m}, y_{n,m}, z_{n,m})$ in the array (which is neither the top of a column nor the right of a row) we follow Ferguson (1964) to construct a function

$$S_{n,m}(u,v) = [X_{n,m}(u,v), Y_{n,m}(u,v), Z_{n,m}(u,v)]$$

with the parameters restricted to the unit square $0 \le u, v \le 1$ and with bicubic components

$$X_{n,m}(u,v) = \sum_{p=0}^{3} \sum_{q=0}^{3} a_{p,q}^{n,m} u^{p,q}, \qquad (1)$$

$$Y_{n,m}(u,v) = \sum_{p=0}^{3} \sum_{q=0}^{3} b_{p,q}^{n,m} u^{p}_{q}^{q}, \qquad (2)$$

and

$$Z_{n,m}(u,v) = \sum_{p=0}^{3} \sum_{q=0}^{3} c_{p,q}^{n,m} u^{p,q}$$
 (3)

(see also Coons, 1967).

To determine the coefficients of these bicubics, we require first that

$$S_{n,m}(u,v) = \begin{cases} P_{n,m} & \text{if } u = v = 0, \\ P_{n,m+1} & \text{if } u = 1, v = 0, \\ P_{n+1,m} & \text{if } u = 0, v = 1, \end{cases}$$

$$P_{n+1,m+1} & \text{if } u = v = 1.$$

$$(4)$$

so that the surface $S_{n,m}$ contains the points $P_{n,m}$, $P_{n,m+1}$, $P_{n+1,m}$, and $P_{n+1,m+1}$. This surface is defined over a region which is approximately the

quadrilateral determined by these points or, more precisely, over the region to be bounded by the curves $[X_{n,m}(0, v), Y_{n,m}(0, v)], [X_{n,m}(u, 0), Y_{n,m}(u, 0)], [X_{n,m}(u, 0), Y_{n,m}(u, 0)], [X_{n,m}(u, 1), Y_{n,m}(u, 1)].$

If we have previously calculated prescribed derivatives $R_{n,m}$ and $T_{n,m}$ at the points $P_{n,m}$, we may require also that

$$\frac{\partial S_{n,m}}{\partial u}(u,v) = \begin{cases} R_{n,m} & \text{if } u = v = 0\\ R_{n,m+1} & \text{if } u = 1, v = 0\\ R_{n+1,m} & \text{if } u = 0, v = 1 \end{cases}$$

$$R_{n+1,m+1} \text{ if } u = v = 1$$
(5)

and

$$\frac{\partial S_{n,m}}{\partial v}(u,v) = \begin{cases} T_{n,m} & \text{if } u = v = 0\\ T_{n,m+1} & \text{if } u = 1, v = 0\\ T_{n+1,m} & \text{if } u = 0, v = 1 \end{cases}$$

$$T_{n+1,m+1} & \text{if } u = v = 1.$$
(6)

Together with the condition that $\partial^2 S_{n,m}/\partial u \partial v$ vanish at (0,0), (0,1), (1,0), and (1,1), equations (4), (5), and (6) determine the coefficients of the bicubics in equations (1), (2), and (3) in terms of the arrays $\{P_{n,m}\}$, $\{R_{n,m}\}$, and $\{T_{n,m}\}$.

It can be shown (Ferguson, 1964) that the composite surface constructed in this manner is continuous, i.e.,

$$S_{n,m}(u,v) = \begin{cases} S_{n,m-1}(1,v) & \text{if } u = 0 \\ S_{n,m+1}(0,v) & \text{if } u = 1 \\ S_{n-1,m}(u,1) & \text{if } v = 0 \\ S_{n+1,m}(u,0) & \text{if } v = 1, \end{cases}$$
(7)

and smooth:

$$\frac{\partial S_{n,m}}{\partial u}(u,v) = \begin{cases}
\frac{\partial S_{n,m-1}}{\partial u}(1,v) & \text{if } u = 0 \\
\frac{\partial S_{n,m+1}}{\partial u}(0,v) & \text{if } u = 1 \\
\frac{\partial S_{n-1,m}}{\partial u}(u,1) & \text{if } v = 0 \\
\frac{\partial S_{n+1,m}}{\partial u}(u,0) & \text{if } v = 1,
\end{cases}$$
(8)

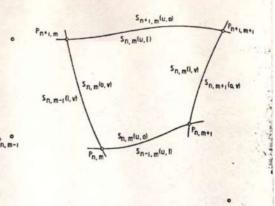


Fig. 2. An element of the composite surface.

 $\frac{\partial S_{n,m}}{\partial v}(u,v) = \begin{cases}
\frac{\partial S_{n,m-1}}{\partial v}(1,v) & \text{if } u = 0 \\
\frac{\partial S_{n,m+1}}{\partial v}(0,v) & \text{if } u = 1 \\
\frac{\partial S_{n-1,m}}{\partial v}(u,1) & \text{if } v = 0
\end{cases}$ $\frac{\partial S_{n+1,m}}{\partial v}(u,0) & \text{if } v = 1$

(see Figure 2).

and

The derivatives $R_{n,m}$ and $T_{n,m}$ are calculated from the points near $P_{n,m}$ in order to avoid the lengthy spline-type calculation of Ferguson (1964). We let

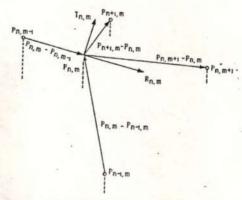


Fig. 3. Derivative calculation.

$$D_{1}^{2} = (x_{n,m} - x_{n,m-1})^{2} + (y_{n,m} - y_{n,m-1})^{2},$$

$$D_{2}^{2} = (x_{n,m+1} - x_{n,m})^{2} + (y_{n,m+1} - y_{n,m})^{2},$$

and set

$$E = (1/D_1^2)(P_{n,m} - P_{n,m-1}) + (1/D_2^2)(P_{n,m+1} - P_{n,m}).$$

Thus $E = (E_1, E_2, E_3)$ is a weighted sum of $P_{n,m} - P_{n,m-1}$ and $P_{n,m+1} - P_{n,m}$, greater weight being given to the vector connecting the closer point.

We finally set

$$R_{n,m} = (\min (x_{n,m} - x_{n,m-1}, x_{n,m+1} - x_{n,m})) \cdot (1/E_1)E.$$

Thus the x coordinate of $R_{n,m}$ is min $(x_{n,m}-x_{n,m-1}, x_{n,m+1}-x_{n,m})$ which insures (as the method of Ferguson does not) that $X_{n,m}(u, 0)$ is monotonically increasing.

The vector $T_{n,m}$ is calculated in the same fashion, using instead the points $P_{n+1,m}$ and $P_{n-1,m}$ and interchanging the roles of x and y (see Figure 3).

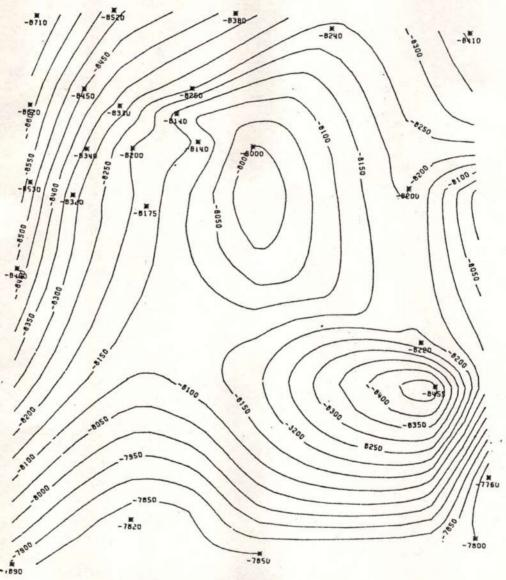


Fig. 4. Contour map of sample data case.

Once the coefficients of the bicubic function have been determined, the interpolation is essentially complete and the composite surface is available for many applications-contouring, determination of a finer grid, calculation of derivatives, approximation of double integrals, etc.

Typically, automatic contouring methods solve for z at given coordinates, and the location of the contour height is found by straight line interpolation. Linear interpolation in the true sense of the word is not used in this particular method. Points on the intersection of the plane z=H with the surface S_{n,m} are found for a given contour height H. Given a value of v, $0 \le v \le 1$, the cubic equation

$$\sum_{p=0}^{3} \left(\sum_{q=0}^{3} c_{p,q}^{n,m} v^{q} \right) u^{p} = H$$

is solved for u. For each solution u between 0 and 1, x and y are calculated from equations (1) and (2). The contour line is approximated by the line segments between these points. Usually five solutions are adequate to yield a smooth contour inside the quadrilateral. If the contour is not sufficiently smooth, more solutions are obtained. The roles of u and v may be reversed depending on the entry and exit positions of the contour.

CONCLUSIONS

The procedure described automatically produces, as noted, sufficiently smooth contour lines which are correctly related to the data points. A contour map generated by this method from the sample data case is shown in Figure 4. Maps produced are comparable to those drawn manually. Also, the use made of bicubic functions gives this method additional advantages.

Most automatic contouring methods require extensive interpolation directly from the set of data points to form a closely spaced grid. Here such direct interpolation is necessary only for

the positions in the array $\{P_{n,m}\}$ which are not occupied by data points. In some cases this interpolation is omitted entirely [i.e., if the original data are arranged in a rectangular grid or otherwise meet the requirements in Ferguson (1964)]. Even so, some benefit could be obtained by developing a more efficient interpolation method and/or finding new methods of constructing the array $\{P_{n,m}\}$ in order to reduce the number of positions not occupied by data points.

Once, however, this preliminary interpolation has been performed and the bicubic functions constructed, the determination of contour lines can be followed or replaced by further interpolation. Indeed, these functions are available for many applications such as calculation of derivatives or approximation of double integrals-at little additional cost and consistent with the contour map.

ACKNOWLEDGMENTS

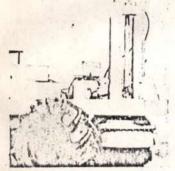
The authors wish to acknowledge the efforts and achievements of J. G. Steward and K. R. Driessel, Amoco Production Company, in the early development and analysis of automatic contouring methods. We are grateful also to L. F. Kemp, Amoco Production Company, for his assistance, and to many other staff members of Amoco Production Company for their valuable comments and suggestions.

REFERENCES

- Coons, S. A., 1967, Surfaces for computer-aided design of space forms: Project MAC Tech. Rep. MAC-TR-41, MIT.

- 41, MIT.

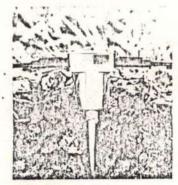
 Cottafava, G., and Le Moli, G., 1969, Automatic contour map: Comm. ACM, v. 12, p. 386-391.


 Ferguson, J., 1964, Multivariable curve interpolation: J. ACM, v. 11, p. 221-228.

 Morse, S. P., 1969, Concepts of use in contour map processing: Comm. ACM, v. 12, p. 147-169.

 Pelto, C. R., Elkins, T. A., and Boyd, H. A., 1968, Automatic contouring of irregularly spaced data: Geophysics, v. 33, p. 424-430.

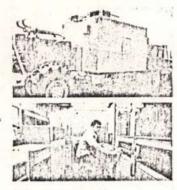
 Shepard, D., 1968, A two-dimensional interpolation function for irregularly-spaced data: Proc.—1968 ACM Nat. Conf., p. 517-524.


you need from the you meed from the

The GSC Model 3600-3 Buggy-mounted 36-inch Dinoseis* System.

The GSC Model 3600-3 gives you a lightweight, highly mobile surface energy source for soft, wooded or rough terrain.

Some of the features of the 3600-3 include: rugged construction resulting in highly reliable operation; modular design which allows incorporation with highly mobile vehicles; passive hydraulic catching system eliminating secondary impulses; the firing system cycle time of 7 seconds which results in highly efficient operation.

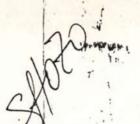


The GSC-20D Digiphone® with MLC-3 Land Case.

This subminiature digital grade geophone combines small size and low cost with a high output - to - weight ratio in a nearly indestructible aluminum alloy case.

Some of the unit's features include: dual hum-bucking coil, non-rotating coil suspension system**, a wide range of coil resistances and frequencies, and easy replacement in the field.

These are just three of the fine seismic products we make. For more information about these or any other Geo Space equipment, write or call us. Geo Space Corporation, 5803 Glenmont, P.O. Box 36374, Houston, Texas 77036. Phone: (713) 666-1611. Cable: GEOSPA. Telex: 762-903.



The GS-2000 Seismic Data Acquisition System.

The GS-2000 data acquisition system brings eight of the most popular features to field locations. The GS-2000 can vertically stack, produce a power spectrum, correlate, produce monitor records with annotation, perform system diagnostic tests, produce demultiplexed output on magnetic tape and perform continuity and leakage tests automatically. An automatic roll-along switch is also featured.

*Trademark of Allanic Richfield Company

**U.S. and foreign patents in process.

CONTOURING AND THE CONTOUR MAP: A NEW PERSPECTIVE*

BY

A. E. WREN**

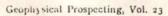
ABSTRACT

WREN, A. E., 1975, Contouring and the Contour Map: A New Perspective, Geophysical-Prospecting 23, 1-17.

With few exceptions, traditional approaches to contouring have been too subjective. Contouring and contour maps are too often discussed in terms more appropriate to any than to science. With hand contouring there is some justification for this attitude; with machine (i.e. programmed) contouring there is none.

Hand contouring is highly susceptible to interpretive judgement and the interpretion is not bound by rigid mathematical constraints. Hence, in allowing for the interpretion "freedom of expression" it may be difficult to evaluate hand contouring in a total analytical and objective manner. Machine contouring, however, is based upon mathematical formulation. It is therefore a consistent and objective procedure, ideally suited to objective definition and analysis.

It can be demonstrated that the combined process of sampling plus contouring constitutes a two-dimensional filter. The contouring component is that part which introduce "distortion" or wavenumber discrimination. An ideal contour package is one that act an all-pass filter where the distortion is zero.


The application of filter theory to the evaluation of a machine contour package and a performance permits description in the more convenient language and terminology of the wavenumber domain, rather than that of the space domain. A more important advant is that the contour package can be subjected to the various standards of filter evaluations as amplitude and phase response.

The practical application, as well as the benefit, of this approach is revealed threat the comparison, in both the space and wavenumber domains, of contour maps general from various machine contour packages.

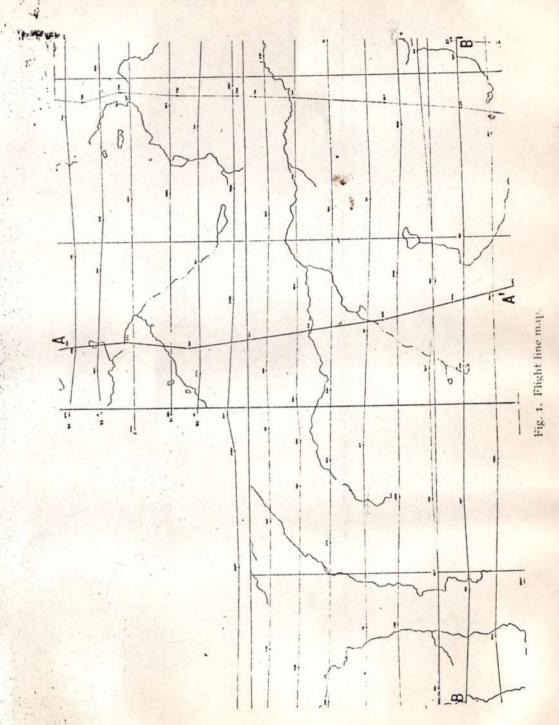
INTRODUCTION

Earth scientists have been using contour maps for many years as a framemental tool to represent a variety of data sets. In recent years the advent computers has led to attempts to duplicate interpretive contouring techniques by machine methods (Walters 1969, p. 2324). Although considerable progresshas been made in developing an understanding of the human logic of contours.

^{**} Amoco Canada Petroleum Company Ltd., Calgary, Alberta Canada.

^{*} Paper presented at the 42nd Annual International Meeting of the S.E.G., Anala California, November 26-30, 1972.

and many computer programs are now available to produce "reasonable" contour maps, a technique to evaluate the reliability of the final map within the context of the data itself has not yet been developed.


This paper will discuss one measure of how faithfully the final contour map depicts the actual surface from which the sample data points have been obtained. The "actual surface" is represented by some finite number of observations from discrete data points x, y, z in the region R concerned. The contouring process then becomes the construction by some operator (human or machine) of a hypothetical surface which is admissible. It can be argued that the classification of surfaces derived from a machine contour package can only be accomplished empirically and intuitively by one who is familiar with the region, the data, and the conceptual situation, or by a machine programmed to play by a prespecified set of rules pertaining to predetermined geological models.

With few exceptions, traditional approaches to contouring have been too subjective and contouring and contour maps are usually discussed in terms more appropriate to art than to science. With hand contouring there may be some justification for this attitude; with machine, or programmed, contouring there is none. Hand contouring is highly susceptible to interpretive judgement or, as may be, to interpretive license where an interpreter is not bound by rigid mathematical constraints. Hence, in allowing for an interpreter's "freedom of expression" it is difficult to evaluate contouring in a totally analytical and objective manner. Machine contouring, however, is based on mathematical formulation and is ideally suited to objective definition and analysis.

CASE HISTORY

The thesis is developed in the manner of a case history where a series of machine contoured maps from a common set of data are examined. These maps are produced from several different machine programs. Some of these are available commercially, the others are "in-house". The performance of each package is compared in both the space and wavenumber domains. A set of aeromagnetic data from Western Canada is used to illustrate the technique but it should be emphasized that any type of data set would suffice.

The flight line pattern is shown on figure 1. The mean spacing between eastwest lines is one mile while the mean spacing between north-south tie-lines is approximately four miles. The field data were recorded at one sample per second which, at the survey flight speed, corresponds to a spatial horizontal sample interval of 61 m (200 feet). The limited available core of the computer necessitated resampling and this involved taking every sixth value, corresponding to a spatial interval of 366 m (1200 feet). After the necessary corrections were applied, an x, y rectangular coordinate grid system was superim-

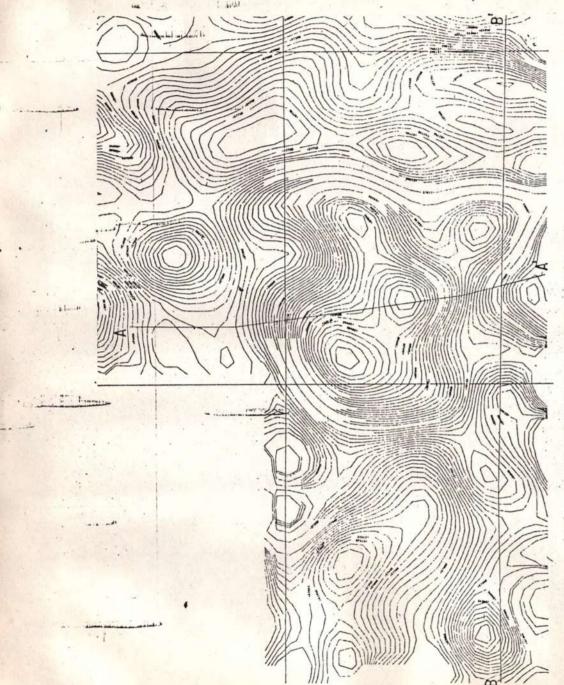
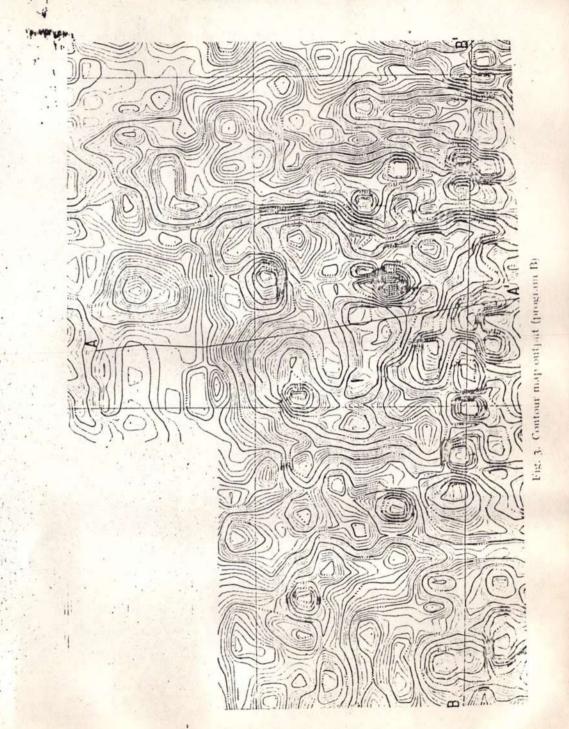



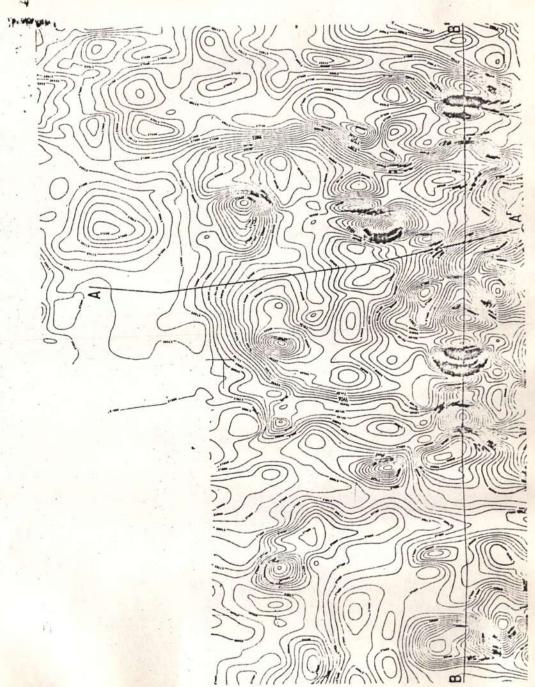
Fig. 2. Contour map output (program A).

posed on the location data. The input work tape thus lists the sampled data in x, y, z format, where z is the total magnetic intensity in gamma defined at a point in the x-y plane. The non-randomness of the spatial distribution coupled with the high density along flight lines is identical to a typical seismic sample distribution.

THE ANALYSIS

Figure 2 illustrates the first contoured map generated from the program referred to as A. Inspection of this map shows that much of the high wavenumber. or detailed information (signal and noise) apparent on the analog flight records had been eliminated in the contour process. Accordingly, the work tape was input to a second program referred to as B and the data re-contoured as shown on figure 3. The control parameters (cell size, smoothing factor, etc.) are of the same order, but visual comparisons between the two maps indicated major differences in anomaly amplitudes and wavenumber. This suggests the need for a more objective and rigorous analysis to determine the precise nature of the differences between the maps, and the true relationship of the maps to the minput data.

The-first step is to make the analysis comparative. This is achieved by contouring the same data set with a series of different programs (C₁, C₂, D). The results are shown on figures 4 to 6. The difference between C1 and C2 is one of cell size only. The second step is to determine an objective evaluation procedure.


Existing Map-Analysis Techniques

Until recently, the comparison of contour maps has been visual and subjective. Now, with various quantitative techniques readily available and easily applicable to computers, more rigorous and sophisticated map comparisons can be made (Merriam and Sneath 1966, p. 1105). For example, since derivative, residual, and continuation techniques are mathematically equivalent to linear filtering in two spatial dimensions, it is possible to make quantitative evaluations of the effects of two different filter coefficient sets without resorting to empirical tests on actual data.

However, in evaluating a contour map per se, the optimum approach is not a comparative one. To say something is "better" is not to say that it is good or even satisfactory. The contour procedure itself should be evaluated in terms of an input-output relationship.

A New Concept of Contouring

A contour map is often thought of as a projected and/or scaled replica of a physical surface. This is not exact. The map is an approximation created by

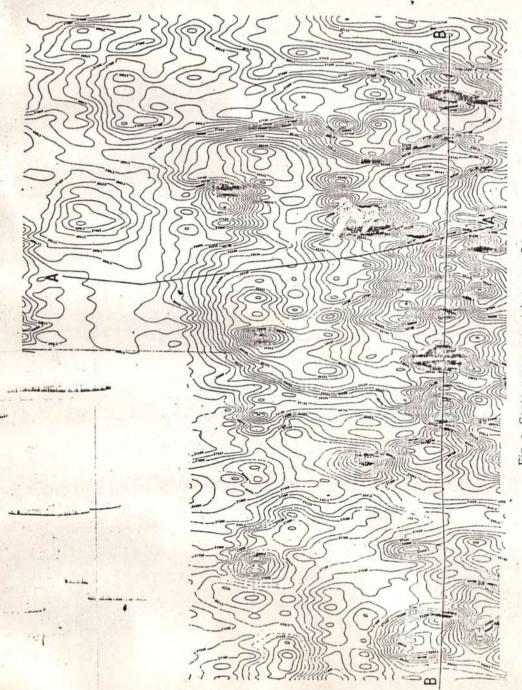
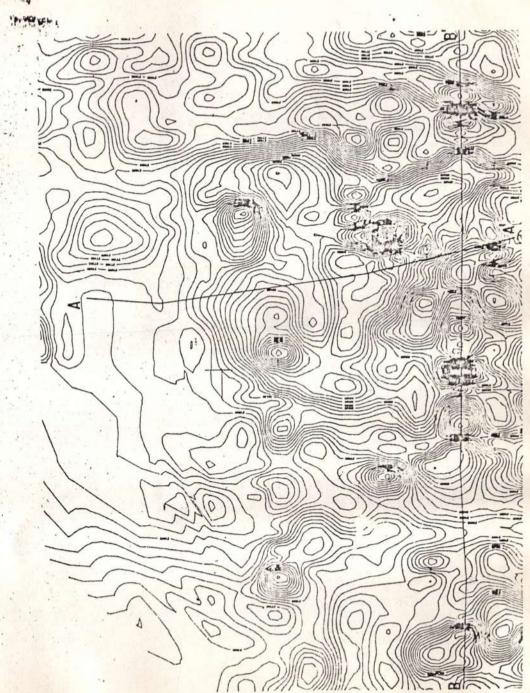



Fig. 5. Contour map output (program C2)

interpolation procedures from a limited set of information. The configuration of the map is therefore dependent on, first of all, the nature of the interpolation procedure and, secondly, the nature of the sampling grid. Since a given contour map represents, in most cases, an approximate or distorted version of an ideal, it can be said that the combined operation of sampling plus interpolation constitutes an act of filtering. For the present it shall be called "contour filtering".

.Contouring as a Filter

Sheriff (1969, p. 261) has defined a filter as "that part of a system which discriminates against some of the information entering it". The definition given by Bracewell (1965, p. 179) is more general. He states that the term "filter" can be used to denote a system having an input and an output.

Despite having both an input and an output, contouring is not a filter in itself. The input and output are fundamentally different; the input is discrete, the output is continuous. Unless the input and output are of a similar nature, it is not meaningful to consider their relationship in terms of filter theory. This can be overcome if sampling and interpolation are considered as a unit. We then input a discrete set of data points and generate a continuous output in the form of a contour map. If the contour map is then re-sampled at the original sample input locations and if the re-sampling produces a set of points identical to the initial sampled set then the contour (interpolation) procedure has acted as an all pass filter, i.e. there is no distortion. If the converse is true, then the contouring is that part of the filter which has introduced the distortion or wavenumber discrimination.

To avoid casting doubt on the validity of such an approach it may be pointed out that geophysical data processing utilizes many procedures, which without always specifically being called so, are, in fact, filtering procedures. As discussed by Dean (1958, p. 97), operations such as upward continuations and second derivative determinations are equivalent to linear filtering in two spatial dimensions where the signal is regarded as a function of distance rather than time. Operators for such objectives as second derivatives may be analyzed and compared in the frequency domain and may be designed as band-pass, low pass or high pass filters. Also, the derivatives may be thought of as involving the convolution of data with a mathematical function or set of weights which constitutes a filter (Fuller 1967).

Description of the "Contour Filter"

It has been established that contouring may be considered in the context of a filter. One of the most significant features of a filter is that it is characterized by the relationship between its input and output, i.e. one need not be

(Papoulis 1962, pp. 81-168). The input and output may be related in several (ways and, in the case of exploration maps, in either the space or wavenumber domains which are uniquely related through the Fourier transform.

The advantage of this approach is that it permits description of the "contour filter" in the more convenient language and terminology of the wavenumber domain. A second, and more important advantage is that the contour package may be subjected to the various standards of filter evaluation, such as amplitude and phase response.

THE EVALUATION

Introduction

In evaluating a contour package there are obvious advantages in utilizing both the space and wavenumber domains. Ideally, this evaluation would incorporate two-dimensional Fourier analysis. As this facility was available only for gridded data at the time of the analysis, it was found expedient to utilize an available one-dimensional Fourier analysis program to analyze the filtering effects of the various contour packages on selected profiles, rather than on the entire map.

Space Domain Comparisons

The first step in the analysis is to plot selected profiles of total intensity in gamma versus horizontal distance. The flight lines chosen are indicated by A-A' and B-B' on figure 1. It can be seen from the map of figure 3 that these two profiles best illustrate the varied magnetic relief of the area.

Four profiles were constructed for the north-south line A-A'. The first was plotted from the original flight line data and the second from the re-sampled data. The degree to which these match is of the highest importance because with re-sampling comes the possibility of aliasing, if the sampling interval is greater than the Nyquist interval. (aliasing may also be thought of as filtering since the aliased sample set will result in a frequency output different from the frequency input). The spatial sample interval of the original data is 61 m (200 feet) and that of the re-sampled data is 366 m (1200 feet). The original data are therefore definitive of a profile whose component wavelengths are greater than 122 m (400 feet), whereas the re-sampled data are definitive only of those profiles whose component wavelengths are greater than 732 m (2400 feet). Equivalently, the aliasing spatial frequencies are .00077 cycles/meter and .000126 cycles/meter respectively. However, as shown on figure 7 the tesampled profile is a close fit to the original profile suggesting a predominance of low wavenumber features and reducing the concern for aliasing.

The third profile on figure 7 is constructed from the map of program A (figure 2) and the fourth from the map of program B (figure 3). The profile from map B offers an excellent comparison with the resampled input. However, the profile from map A bears only a vague relationship to the other three and appears as a moving average type of profile where the spatial amplitude spectrum has been considerably distorted since the contour package A has acted as a low-pass filter.

Fig. 7. Space domain profile comparisons (line A-A').

It could be emphasized at this point that in interpreting magnetic data from the point of view of depth-to-basement determinations, the amplitudes and gradients of the flanks of an anomaly are the critical parameters. Consequently, if depth-to-basement calculations were made on map A, the calculated depths would be a factor of 4 times the true depth. The severe filtering imposed by package A has rendered the map useless for interpretation. The effects are more forcibly demonstrated in figure 8 where the magnetic relief is more eccentric. Figure 9 illustrates the comparisons of profiles B-B' reconstructed from maps C_1 , C_2 and D (figures 4-6 respectively). In each case it can be seen that the spatial amplitude spectrum of the input is well preserved by each package.

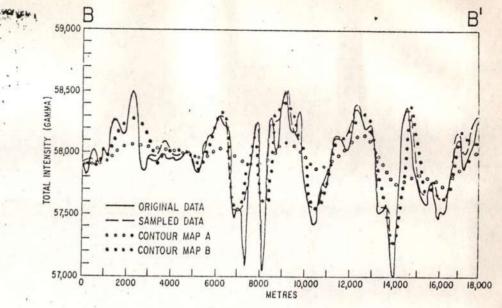


Fig. 8. Space domain profile comparisons (line B-B').

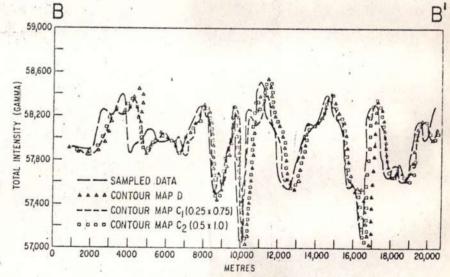


Fig. 9. Space domain profile comparisons (line B-B').

Wavenumber Domain Analysis

The second step in the overall analysis is the determination of the various input and output wavenumber spectra. Accordingly, the analysis of the

1

profiles was carried further by the application of a harmonic analysis program. Both amplitude and power spectra were produced for each profile. The program, unfortunately, did not have an option for phase spectra, thus these are not available. Their significance is therefore not appreciated at this time.

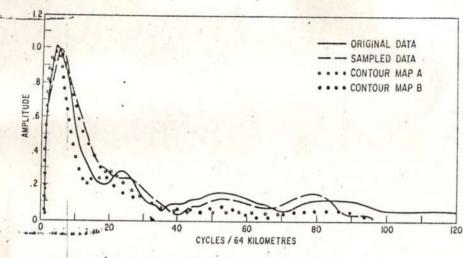


Fig. 10. Amplitude spectra (line A-A').

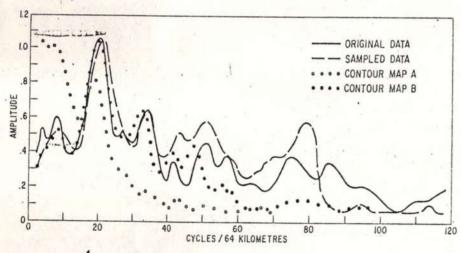


Fig. 11. Amplitude spectra (line B-B').

Figure 10 shows the amplitude spectra for the original data, the re-sampled data and the profiles from maps A and B along line A-A'. It is therefore the wavenumber transform illustration of Figure 7. Figure 11 is the equivalent of Figure 8, along profile B-B'. Figure 12 is the amplitude spectrum equivalent of figure 9

programs C₁, C₂ and D do an excellent job in maintaining the input wavenumber spectra. Any further considerations in the context of these data as to which is the "best" would involve an analysis of the phase-shift characteristics of each package, since it is difficult to separate them on the basis of their amplitude spectra alone.

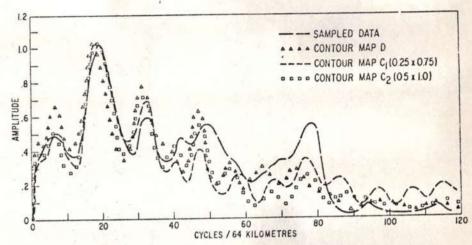


Fig. 12. Amplitude spectra (line B-B').

Summary of the Analysis

This paper is in the nature of a reconnaissance. It sets out to emphasize more of a method than a result. Hence, the comparative aspects need not be considered in full detail. Visual inspection of map A (figure 2) inspires doubt as to its reliability. This leads to a comparison with map B (figure 3) which points out the differences but establishes nothing. An objective analysis can only be made by utilizing the input and output profiles in both the space and wavenumber domains. This analysis does not depend on having the data contoured by other packages; it is self-definitive, i.e. map A could be stamped inadequate on the basis of its amplitude characteristics in the space and wavenumber domains.

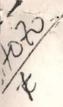
CONCLUSIONS

The quantitative comparison of a suite of contour maps produced from a common data set is a somewhat tentative objective. At the present time is not possible to stipulate the ultimate criteria on which such comparison might be made. However, the application of spectral analysis constitute objective approach, regardless how obvious it might seem in retrospect.

At this stage the following conclusions can be made:

- For the first time a technique has been implemented which provides a
 quantitative assessment of the reliability of the map in the context of the
 input data.
- 2. It is obvious that the choice of input parameters is critical. For example, the difference in input cell size leads to the difference between maps C₁ and C₂ (figures 4, 5). The parameter determines the nature of the applied filter. Different cell dimensions will produce different filter responses. The use of the smaller cell in map C₂ has apparently forced more detail into the contours and stressed trends which are somewhat artificial.
- 3. The amplitude spectrum of the output data could be illustrated on the map alongside the amplitude spectrum of the input data. Ideally, these should be two-dimensional. If the frequency response of the program is then unacceptable, the input parameters can be redesigned and the map recontoured.
- 4. Although this analysis has dealt with aeromagnetic data, it can be applied to contour maps generated from any data set.
- 5. At the present time, for most two-dimensional studies, it is a prerequisite that the data be input on a regular grid. Nonuniformly sampled data introduces the necessity for gridding. Although there are programs available which can produce gridded data from randomly distributed data, they are restricted to a fairly small matrix generation. Also, gridding and interpolation lead to filtering. Therefore, the application of these techniques prior to spectral analysis is discouraged. This stresses the need for more sophisticated programs which will perform two-dimensional harmonic analysis on irregularly spaced data directly. Such programs are now commercially available.
- 6. Contour filtering is, in most cases, low-pass filtering. This is due primarily to the discriminating properties of sampling.
- Interpolation contouring is a linear filter where the wavenumber response depends on the initial data arrangement and interpolation interval in gridding.
- 8. A current problem in machine contouring is bias, or lack of it, in some certain direction. The only way to attack this is to perform a two-dimensional analysis. If the predominant strike is at some angle to the traverse lines, is one package preferable to another for maintaining the bias if desirable, or alternatively eliminating if undesirable?

ACKNOWLEDGEMENTS


I would like to express my thanks to Amoco Canada Petroleum Company Ltd. for permission to publish this paper. I also gratefully acknowledge the Copperation of two colleagues, Bob Smith with whom the initial study was fundertaken and Eric Dahlberg for providing much stimulating discussion.

Thanks are also extended to the Drafting Department at Amoco for the excellent quality of the diagrams.

REFERENCES

- Bracewell, R., 1965, The Fourier Transform and its Applications. McGraw Hill Book Co., New York.
- DEAN, W. C., 1958, Frequency analysis for gravity and magnetic interpretation: Geophysics 23, 97-127.
- Fuller, B. D., 1967, Two-dimensional frequency analysis and design of grid operators:
 Mining Geophysics, v. II, Theory, The Society of Exploration Geophysicists, 658-708.
- MERRIAM, D. F. and SNEATH P. H. A., 1966, Quantitative comparison of contour maps:

 Jour. Geophys. Res. 71, 1105-1115.
- Papoulis, A., 1962, The Fourier Integral and its Applications: McGraw-Hill Book Co., New York.
- Sheriff, R. E., 1969, Addendum to glossary of terms used in geophysical exploration: Geophysics 34, 255-270.
- Walters, R. F., 1969, Contouring by machine: a user's guide: A.A.P.G. Bulletin 53, 2324-2340.

METHODS FOR CONTOURING IRREGULARLY SPACED DATA*

BY

G. BOLONDI**, F. ROCCA*** and S. ZANOLETTI**

ABSTRACT

BOLONDI, G., ROCCA, F., and ZANOLETTI, S., 1977, Methods for Contouring Irregularly Spaced Data, Geophysical Prospecting 25, 96-119.

The sampling theorem in two dimensions univocally defines a surface, provided that its values are known at points disposed on a regular lattice. If the data are irregularly spaced, the usual procedure is first to interpolate the surface on a regular grid and then to contour the interpolated data: however, the resulting surface will not necessarily assume the prescribed values on the irregular grid.

One way to obtain this result is to introduce a transformation of the coordinates such that all the original data points are transferred into part of the nodes of a regular grid. The surface is then interpolated in the points correspondent to the other crosspoints of the regular grid; the contour lines are determined in the transformed plane and then, using the inverse coordinate transformation, are transferred back to the original plane where they will certainly be congruent with the original data points.

Nonetheless, the resulting surface is very sensitive to the interpolation method used: two algorithms for that are analyzed. The first (harmonization) corresponds to the determination of the potential of an electrical field whose contour conditions are those defined by the data points. The second method consists in two dimensional statistical estimation (krigeing); in particular, the effects of different choices for the data autocovariance function are discussed.

The solutions are compared and some practical results are shown.

I. INTRODUCTION

In this paper a method for contouring irregularly spaced data will be analyzed. This problem arises often in geophysical exploration; in gravimetrics, the locations where the gravimetric anomaly has been measured are randomly scattered throughout the area to be examined; in aeromagnetics, the data are aligned on an irregular grid of the lines of flight; in seismics, the data to be contoured may derive from seismic lines and/or wells, again scattered in the plane and randomly placed, representing depths, times or velocities, and their uncertainty will be variable.

** AGIP - Attività Minerarie, S. Donato Milanese, Milano, Italy.

*** Politecnico di Milano, Milano, Italy.

In all cases the problem to be solved is to guarantee that the resulting surface is smooth enough, without fictitious structures, and also that the data points are honoured, exactly or approximately, depending on their nature.

The surface discussed in this paper, however, will pass strictly through the data points.

This problem has already been studied by several authors (Crain 1972, Merrill 1973); the difficulties encountered will be analyzed and the structure of a method for their solution will be outlined.

Since the problem is easily solved when the data are disposed on a regular grid, the method used will be simply that of introducing a transformation in the x-y plane such that the data in the transformed plane u-v have integer coordinates in the interval

$$0 < u \le L$$
, $0 < v \le M$.

In general, the number N of data points will be smaller than $L \times M$ so that to determine completely the surface in the plane u-v and therefore in the plane x-y their values at the other crosspoints of the grid have to be interpolated.

Two algorithms will be given for that purpose: one ideally connected to "krigeing", i.e., two dimensional estimation based on the stochastic properties of the data (Merriam 1973), the other serving to determine the electrical potential of a field whose contour conditions are those defined by the data points.

Once the surface is defined at all the crosspoints of the grid the definition is extended to all points of the plane using bicubic splines (Ahlberg, Nilson, and Walsh 1967).

A simple method for the approximate determination of the contour lines is also given. Some examples will follow.

2. GENERALITIES

Let us consider a surface regularly sampled on a grid with interval Δx and Δy in the x and y directions, respectively,

For the sampling theorem, the spectrum of the sampled surface will correspond to that of the original surface $S(f_x, f_y)$ (where f_x, f_y are spatial frequencies or wave numbers in the x and y directions, respectively), periodically repeated with centers in the points having the coordinates (see fig. 1)

$$f_x = \frac{1}{2\Delta x}$$
 $f_y = \frac{1}{2\Delta y}$. (1)

If $S(f_x, f_y)$ is contained in the shaded lozenge, then we can interpolate the surface from the sampled data without errors, provided that we use filters whose Fourier transforms are (Papoulis 1968)

^{*} Paper presented at 37th Meeting of the European Association of Exploration Geophysicists, June 1975, Bergen, Norway.

$$H(f_x, f_y) = 1$$
 in the lozenge $H(f_x, f_y) = 0$ elsewhere (2)

This means that if the highest spatial frequencies contained in the signal are low enough, a complete reconstruction is possible. This reconstruction is obtained by means of the convolution of the sampled signal with the pulse response of the filter, i.e., the Fourier anti-transform of $H(f_x, f_y)$. This pulse response decreases to zero practically in a few sample intervals.

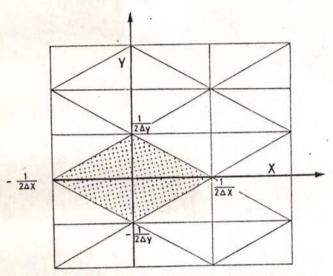


Fig. 1. Fourier Transform of a sampled surface.

This means that each point of the continuous surface is interpolated from the neighbouring points (Papoulis 1968).

In a later section we will see that it is possible to obtain a good smoothed approximation of this surface without actually using the afore-mentioned complicated interpolation procedure; it will be enough to approximate the surface by reducing it to quadrilateral patches whose vertices are the crosspoints of the grid; the values of the surface inside the patches will be determined by means of bicubic spline interpolation.

On the other hand when the data are irregularly spaced, the sampling theorem does not apply; therefore, we cannot have a univocally determined surface passing through the data points.

An immediate consequence is that any interpolation method chosen has many elements that can be fixed arbitrarily so that the final choice between two "reasonable" methods has to rely on ill defined "qualities" of the resulting contour map.

In principle, the simplest method that can be adopted in the random spacing case is the one of reducing it to regular spacing, interpolating in some way the data on a regular grid. We are then reduced to the case previously analyzed.

However, noticeable difficulties appear if we try to apply this method. In fact, no interpolating method has been found, up to now, capable of ensuring that the resulting surface will pass through the irregularly spaced data. Obviously the difference in level will not be very large if the grid interval is small enough, but nonetheless differences will appear.

Therefore, a second approximation is necessary in which the data on the regular grid are corrected so that the surface will behave as desired.

Thus we see that, unless we accept some inconsistency between the original data and the interpolating surface, the method that appeared so simple may be expensive in terms of computing time, or even impossible, if the grid interval is too large.

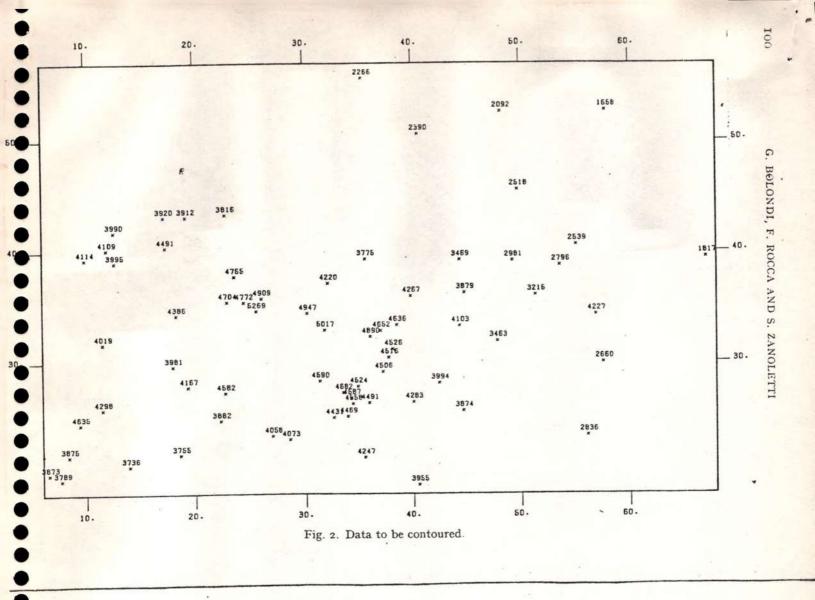
Another method, apparently more complicated, but in fact simpler, proceeds as follows (Hessing, Lee, Pierce, and Powers 1972).

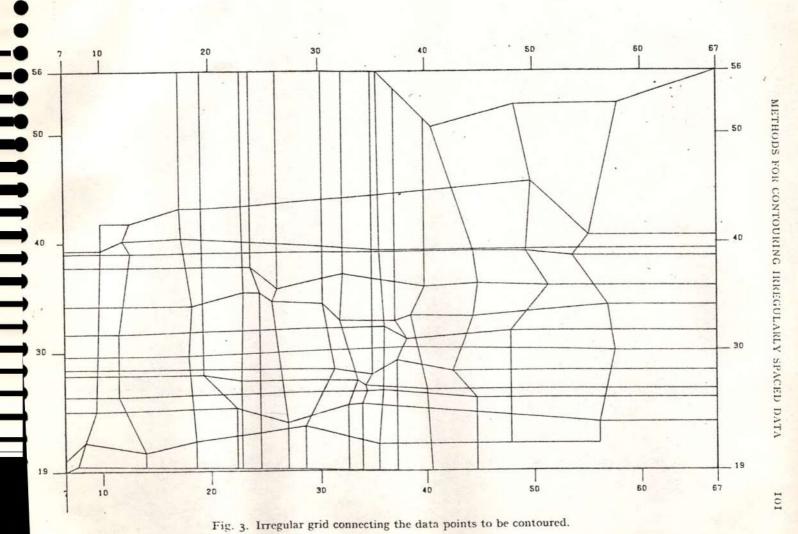
A bi-univocal correspondence between the x-y plane and another plane u-v is found

$$x = X(u, v) \qquad u = U(x, y)$$

$$y = Y(u, v) \qquad v = V(x, y)$$
(3)

such that the data points will correspond to points having integer coordinates in the u-v plane. Once this correspondence has been established we are again reduced to the regular case provided that we interpolate the surface at the points corresponding to the other crosspoints of the regular grid in the u-v plane.


After interpolation we get the surface in the u - v plane and applying the inverse transformation (3) we obtain the surface in the x - y plane.


In conclusion, the problems to be solved are, in succession:

- a) finding the transformation (3) and its inverse;
- b) interpolating the surface z(x, y) at all the points corresponding to the crosspoints of the regular grid in the u v plane.

3. DEFINITION OF THE CORRESPONDENCE BETWEEN u, v AND x, y

To establish the correspondence (3) it is first necessary to define the points in the x-y plane corresponding to all the crosspoints of the regular grid. To accomplish this the data are divided into (L+M) sets of points corresponding to the L rows and M columns of the regular grid. The subdivision is univocally determined if the two following rules are observed:

METHODS FOR CONTOURING IRREGULARLY SPACED DATA

- a) all points contained in the set corresponding to one row will have their ordinates smaller (larger) than the ordinates of the elements of the set correspondent to the next (preceding) row. The same can be said for the columns.
- b) No two points may belong to the set corresponding to the same row (or column) if the straight line connecting them makes an angle greater than $\pi/4$ with the horizontal (or vertical).

Once these rules have been applied, L and M are determined and each set corresponding to a row or to a column of the grid will contain at least one datum point.

Abscissae $x_{i,k}$ and ordinates $y_{i,k}$, of the points in the x-y plane correspondent to the other crosspoints of the regular grid are independently determined using linear interpolation between abscissae and ordinates of the neighbouring data points respectively (see fig. 2 and 3).

At this stage we know that

$$X(i, k) = x_{i,k}$$

$$Y(i, k) = y_{i,k}.$$
(4)

The transformation is extended to the points having non-integer coordinates using bi-cubic spline interpolation (Ahlberg et al 1967).

4. Interpolation of Missing Grid Crosspoints Through Harmonization

As was observed before, the task of interpolating the surface at the other crosspoints of the grid may be accomplished in several ways: we will first discuss the case in which we will take as a prime requisite that the surface be the smoothest possible, compatibly with the given data points.

We can then think of the surface as the electric potential of a field having boundary conditions corresponding to the data points.

Should this be the case, then the surface would have to satisfy the harmonicity condition, i.e.

$$\nabla^2 z(x, y) = 0 \qquad x, y \neq x_{i,k}, y_{i,k}. \tag{5}$$

This condition can be easily converted to the corresponding one, valid for the finite difference case, using only the values of the surface at the crosspoints of the irregular grid in the x-y plane.

The relation that has to be satisfied is approximately

$$z_0 = \frac{\sum p_i \cdot z_i}{\sum p_i} \quad \text{with } p_i = \left(\frac{r_0}{r_i}\right)^2 \tag{6}$$

 z_0 = the surface value of the point to be interpolated;

z_i = the surface values of the four given points surrounding the points to be interpolated;

 $r_0 = unit' distance;$

where

 r_i = distance between z_i and z_0 .

(Obviously this formula is not applied to the data points).

We start from a trial solution and then iterate the algorithm

$$z_0^{(m+1)} = \frac{1}{2} \left[z_0^{(m)} + \frac{\sum p_i \cdot z_i^{(m)}}{\sum p_i} \right]$$
 (7)

until the variations are small enough.

This method may appear rather odd, but in fact it is none other than smoothing the surface (or at least some of its points) leaving the data points unmodified. The smoothing operation is continued until an asymptotic situation is reached. To guarantee the stability of the method it is proper to refer to the well known algorithms in use for the determination of the electric potential fields.

Instead of referring to the harmonicity equation one could have referred to the biharmonic equation, i.e. to the displacement of an elastic plate of a given rigidity, constrained to pass through the data points; however, this could create fictitious structures.

. The reason for which we referred to the harmonic equation is simply the fact that the smoothing algorithm is much cheaper to apply, but there are no valid reasons not to refer to other elliptic partial differential equations.

In conclusion, this method of interpolation has no particular meaning except that of giving results very similar to those that could be found in "hand made" maps.

5. Interpolation of Missing Grid Crosspoints Through a Two-Dimensional Estimation

To state it crudely, the essence of the interpolation method analyzed in the previous section corresponds to affirming that the surface is the smoothest possible where we do not know its value.

Another interpolation method, having a completely different philosophy, is the one corresponding to two-dimensional estimation.

In fact a more relevant approach could be the one of saying that the surface "behaves" in the same way in the known and in the unknown regions. If now we want to give a quantitative meaning to this idea, then we must introduce the concepts of stochastic fields (Papoulis 1968) uniform in the two directions.

METHODS FOR CONTOURING IRREGULARLY SPACED DATA

We will suppose now that z(x, y) is a random surface of which we can determine the covariance function

$$E\{z[(x + \xi), (y + \eta)] \cdot z[x, y]\} = R(\xi, \eta)$$
 (8)

where E is the ensemble mean operator and ξ and η are the components along the two axes of the distance between the points. We are interested in the cases in which z behaves similarly everywhere, and therefore the covariance function $R(x, y, \xi, \eta)$ depends only on ξ , η and not on x, y.

The problem is therefore the one of assigning a value to $R(\xi, \eta)$: this can be done by exploiting the data, finding their cross-covariance using spatial averaging, and then fitting some parameter of a two-dimensional function.

For example, we could assign to $R(\xi, \eta)$ an exponential form

$$R(\xi, \eta) = e^{-\alpha|\xi| - \beta|\eta|}. \tag{9}$$

and fit the parameters α , β to the cross-covariance of the data in the x, y directions, respectively.

Other forms of $R(\xi, \eta)$ might be

$$\begin{cases} R(\xi, \eta) = \mathbf{I} - \frac{\sqrt{\xi^2 + \eta^2}}{\xi_0}, & \sqrt{\xi^2 + \eta^2} < \xi_0 \\ R(\xi, \eta) = \mathbf{0} & \text{elsewhere}; \end{cases}$$
 (10-a)

$$R(\xi, \eta) = I / \left[I + \frac{\xi^2 + \eta^2}{\xi_0^2} \right]^{3/2}$$
, or (10-b)

$$R(\xi, \eta) = e^{-\frac{\xi^2 + \eta^2}{\xi_0^2}}$$
 (10-c)

In the first case, $R(\xi, \eta)$ is anisotropical; in the other cases the behaviour in the two directions is identical.

In the appendix the effects of the choice of a given covariance function will be analyzed in more detail.

Let us suppose now that this problem is solved: then the problem of finding the optimal linear interpolator of the surface at the point $z(x_0, y_0)$ in the mean square sense is easily solved.

In fact we know that the estimator $\hat{z}(x_0, y_0)$ is

$$\hat{z}(x_0, y_0) = \sum_{m=1}^{N} \alpha_m(x_0, y_0) \cdot z_m(x_m, y_m), \qquad (II)$$

since we seek a linear interpolator. The weights α_m are found from the condition that

$$\mathrm{E}[\widehat{z_0} - z_0]^2 = \varepsilon^2, \tag{12}$$

be minimal. Developing the square and applying relation (8) we see that the search for the unconditioned minimum leads to the so called *normal* (Wiener-Hopf) equations

$$\sum \alpha_m \cdot r_{m,n} = r_n \qquad n = 1, \dots N \tag{13}$$

where

$$r_{m,n} = R(x_m - x_n, y_m - y_n)$$

$$r_n = R(x_0 - x_n, y_0 - y_n)$$
(14)

105

and x_m , y_m is the location of datum point z_m . This interpolating procedure is optimal in the case that z(x, y) is a spatially stationary, zero mean Gaussian variate.

6. INTERPOLATION IN THE PRESENCE OF A TREND

If a known trend is superimposed on the data, the best thing to do is to remove it, to apply to the residuals this interpolation method and then to replace the trend. If it is not known, a reasonable approach might be the one of subtracting a low order two-dimensional polynomial, such that the residuals will appear stationary. There is no general rule for this operation, at least not until one has specified what is intended by trend, as well as conditions that may ensure that the trend has been properly removed.

Another approach is that of imposing that the coefficients of the interpolator be "transparent" to the trend. In other words let the trend be expressed by

$$f(x, y) = \sum_{i=1}^{q} t_i \cdot f_i(x, y) \tag{15}$$

where the t_i are coefficients and $f_i(x, y)$ are a set of q given smooth functions of x, y. Then we have to impose the following set of conditions on the N interpolation weights

$$\sum_{m=1}^{N} \alpha_m \cdot f_i(x_m, y_m) = f_i(x_0, y_0), \qquad i = 1, \dots, q.$$
 (16)

These conditions correspond to the imposition that the result of the interpolation be independent of the chosen trend.

In the simplest case, we can pose q = 1, f(x, y) = 1, and conditions (16) reduces to

$$\sum_{m=1}^{N} \alpha_m = 1 \tag{17}$$

In this case the interpolation result is independent of a possible constant that may be added to all values of the surface.

Applying (17) we are in a case of bounded minimum, that can be solved using Lagrangian multipliers.

METHODS FOR CONTOURING IRREGULARLY SPACED DATA

We know that

 $X(u, v) = x_{i,k}$ $Y(u, v) = y_{i,k}$ u = i = 1, ... L $Z(u, v) = z_{i,k}$ v = k = 1, ... M. (18)

107

We will first determine the functions X(u, v), Y(u, v) for non integer values of u, v. To determine the bicubic splines we need the derivatives

 $\frac{\partial X}{\partial u}$, $\frac{\partial U}{\partial u}$, $\frac{\partial V}{\partial v}$, $\frac{\partial V}{\partial v}$

These are found as follows: the parabolas with vertical axes passing through the points $(x_{i-1,k}, y_{i-1,k})$, $(x_{i,k}, y_{i,k})$, $(x_{i+1,k}, y_{i+1,k})$ are found and their tangents at the point $(x_{i,k}, y_{i,k})$ are determined. This value is assigned to

 $t = \frac{\partial X}{\partial u} / \frac{\partial Y}{\partial u} \qquad u = i \\ v = k$ (19)

The actual values of the derivatives are found by multiplying t times the length of the minor of the two sides linking the point with the neighbouring ones in the u direction. The same is done for the v = constant links.

Once the transformations X(u, v), Y(u, v) are completely determined the two derivatives $\partial Z/\partial u$, $\partial Z/\partial v$ have to be found. This could be done using the two-dimensional estimation algorithm, but the result is too noisy. The tangent plane to the surface at the point P_0 is therefore defined to be the plane passing through P_0 best fitting the four adjacent points. Once $\partial Z/\partial x$, $\partial Z/\partial y$ are found, the derivatives are determined with the following formula:

$$\frac{\partial Z}{\partial u} = \frac{\partial Z}{\partial x} \cdot \frac{\partial X}{\partial u} + \frac{\partial Z}{\partial y} \cdot \frac{\partial Y}{\partial u}$$

$$\frac{\partial Z}{\partial v} = \frac{\partial Z}{\partial x} \cdot \frac{\partial X}{\partial v} + \frac{\partial Z}{\partial v} \cdot \frac{\partial Y}{\partial v}$$
(20)

9. THE CONTOURING

Once the surface has been defined, its level curves remain to be determined. This is accomplished by first finding their intersections with the irregular grid in the x-y plane, or with the regular grid in the u-v plane. These intersections have now to be interconnected: the tangents to the interconnecting curve are already known, at least at the points of intersection previously found.

The aspect of the interpolated surface changes depending on whether condition (17) is applied or not: in the latter case, in fact, the weights (and therefore their sum) will tend to zero if the distance of the point to be interpolated from the other points is large enough. This may contribute to give an aspect to the surface of being "peaked" around the data points.

7. COMPARISON BETWEEN THE TWO METHODS OF INTERPOLATION

The most noticeable difference between the two methods discussed in the previous sections is that using the "harmonization" procedure the interpolated values never exceed the range of the data; maxima and minima of the surface are data points. This is peculiar to harmonic functions where maxima are always at the boundaries. The interpolation procedure corresponding to two-dimensional estimation leads to interpolated values whose range may greatly exceed that of the data, depending on the covariance function chosen, as will better be seen in the appendix. In general, this algorithm will tend to add new features to the surface extrapolating local trends.

Another interesting feature of the "harmonization" procedure is the smoothness of the resulting surface. Application of the algorithm (II) in general creates "noisy" surfaces, and more so if the set of data points for the interpolation is changed from one point to the other.

This may happen when N is very large and the solution of the system (13) becomes clumsy. In this case, one could exploit the fact that if a point P_1 is between the point to be interpolated P_0 and another point P_2 , then the weight to be given to the value of the surface at P_2 is much smaller than that corresponding to the valued at P_1 . Then to get a good approximation of the solution of the set (13), it is enough to use for the interpolation the 8 or 16 points (one or two for each octant) nearer to P_0 . This indeed simplifies the search for the solution, but may add disturbances to the results, since the set of points used as the basis for the interpolation changes from one point to the other.

Good results may be obtained using the two-dimensional estimation as a basis for the harmonization. After the first interpolation using (11) the iterative algorithm (7) is used until the noise has been smoothed out. If the iterations are continued, all the structures generated by the extrapolation of the local trends are flattened and a complete smoothing is obtained.

By properly choosing the number of iterations a good compromise between the two approaches can be found.

8. BI-CUBIC SPLINE INTERPOLATION

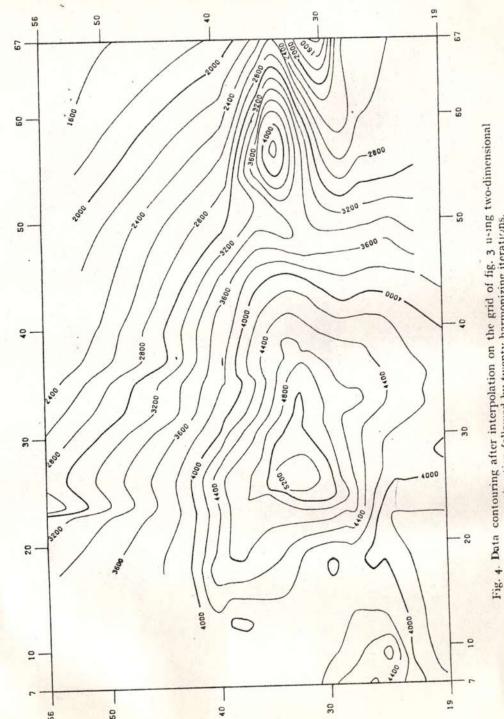
Up to now we have determined how to interpolate the functions at all the crosspoints of the irregular grid. To determine the function for all the values of x, y we turn to bicubic spline interpolation.

If the curve intersects the patch at only two points then it may be enough to approximate it with a cubic, defined with end-points and end-tangents. If the intersecting points are more than two, say four or more, information has to be added to determine which point has to be connected with which other.

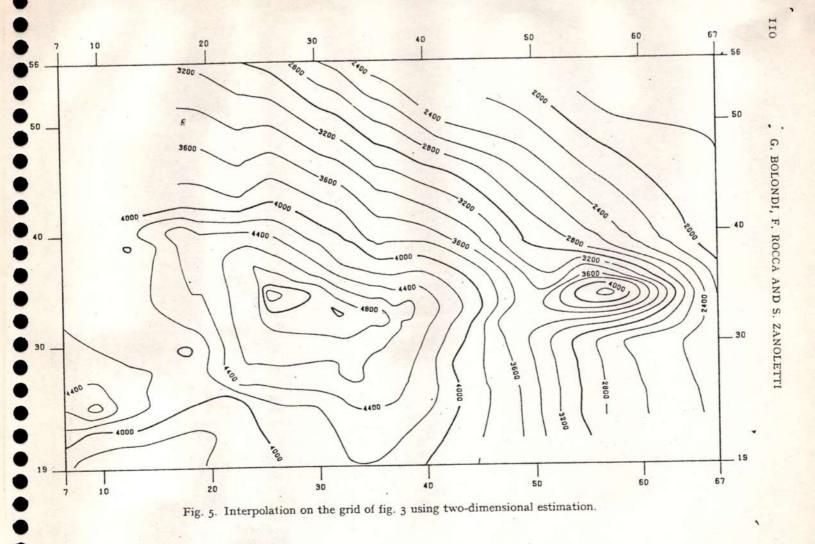
In general, this could be accomplished only by decomposing the patch into smaller surfaces and determining the intersections of the curve with the new boundaries. A simple method, but effective enough, consists in adopting the interconnection that corresponds to the minimal total tensile strain of the splines.

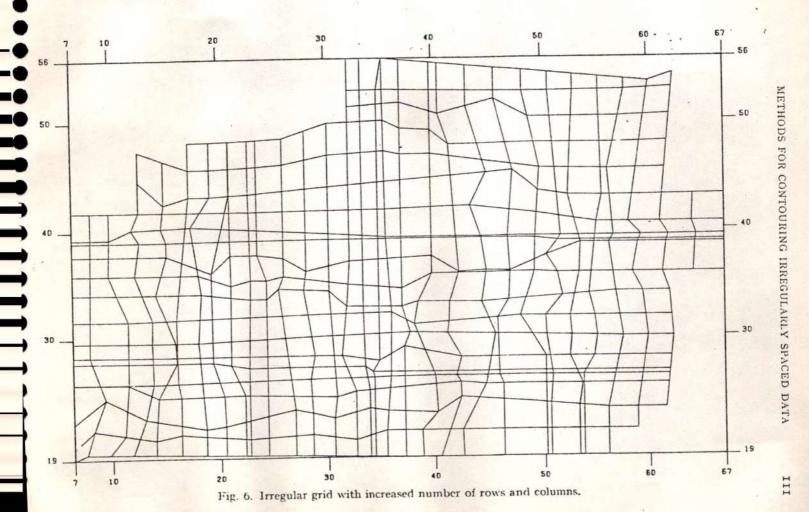
ENRICHMENT OF THE LATTICE

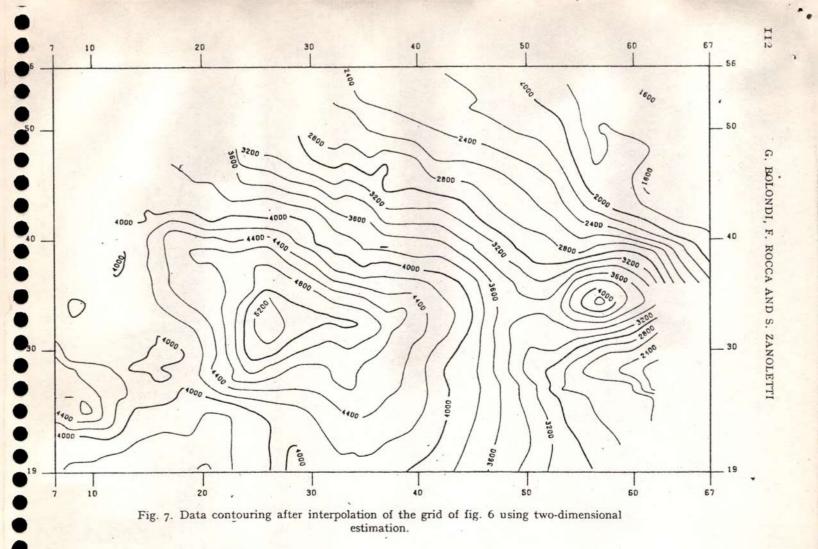
With the algorithm described in section 3, the lattice may be too uneven and the interpolation may show signs of that. It is useful therefore to regularize the grid adding new rows and columns, so that the maximum interval between subsequent rows or columns is limited to a preset value. All the remainder of the contouring is left unchanged.


II. PRACTICAL EXAMPLES

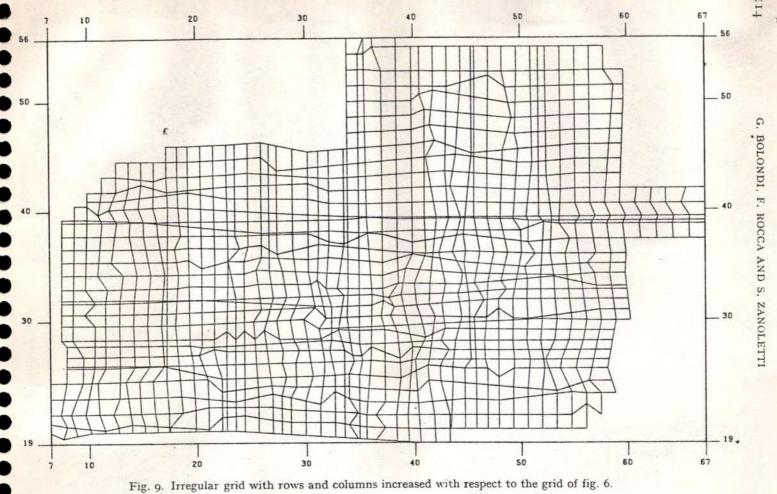
The contouring of the data in fig. 2 are shown in order to give an idea of the results of the application of the algorithms previously derived. If the rules in section 3 are followed, the irregular grid is that in fig. 3. The contouring of the data using two-dimensional estimation is illustrated in fig. 4. The covariance used is that of formula (10-b); the distance ξ₀ varies to adapt to the local structure of the data. The result of twenty iterations of algorithm (7) is shown in fig. 5.


The anomaly at abscissa 23 is reduced, the trough at right is flattened, and the 5000 line is split. Also the contour lines are smoother.


If the lattice is enriched as in fig. 6, the contouring without harmonization is that in fig. 7. The surface appears more noisy and with more structures: see, for example, the 4000 line at the left. After twenty harmonization steps (fig. 8), the noise is much smaller.


If the lattice is enriched further (fig. 9), the surface becomes very noisy if no harmonization is applied (fig. 10). On the other hand, with twenty iterations we obtain the best results (fig. 11). The structure at the right now is much less elongated due to the higher regularity of the lattice.




ion on the grid of fig. 3 u-ing twenty harmonizing iterations

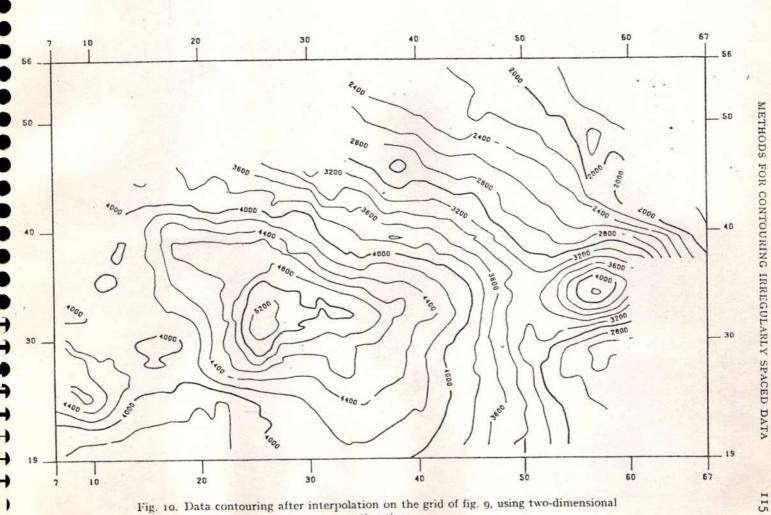
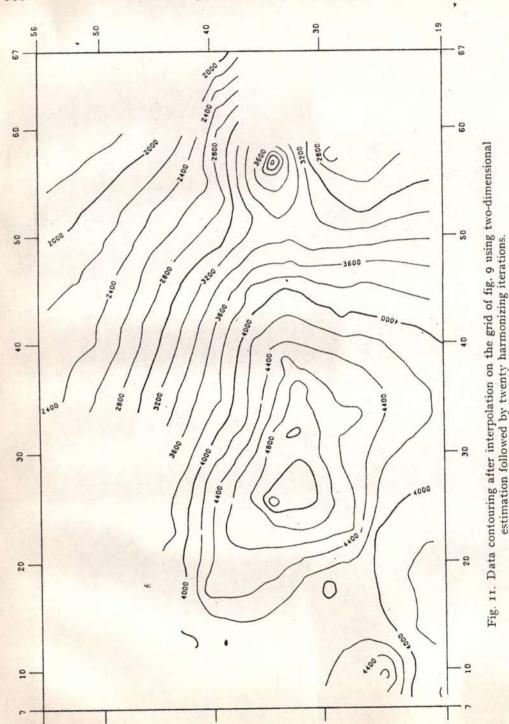



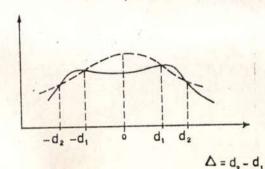
Fig. 10. Data contouring after interpolation on the grid of fig. 9, using two-dimensional estimation.

12. CONCLUSIONS

We have discussed a system for the contouring of randomly spaced data, guaranteeing the full respect of the given points. The two algorithms for the estimation of the crosspoints of the irregular grid are somehow complementary in that the two dimensional estimation may be a good starting point for the successive iterated smoothing. The enrichment of the lattice in respect to the minimal covering may be helpful to regularize the lattice itself, even if it may be expensive in computer time.

The same algorithm could have been applied in presence of faults: in this case though, the use of a regular lattice, and therefore the renouncement to the full respect of the data, is of great help to simplify the data management.

AKNOWLEDGEMENTS

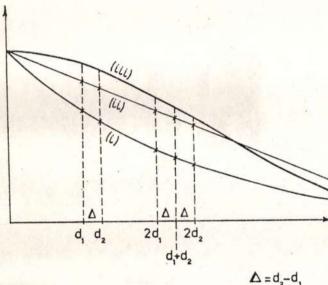

The authors wish to thank AGIP-Attività Minerarie for the permission to present this paper. They would also like to thank Dr. D. Fenati for his suggestions and criticism during the preparation of the paper.

APPENDIX

Effects of the choice of a covariance function

We will now see the effects of the choice of a covariance function. For simplicity, we will examine a monodimensional, symmetric case. We want to estimate z(0), from $z(d_1)$, $z(-d_1)$, $z(d_2)$, $z(-d_2)$. We will also suppose that $d_2 > d_1$ (fig. A-I). For symmetry we require that the estimator be

$$\begin{cases} \hat{z}(0) = k_1 \cdot [z(d_1) + z(-d_1)] + k_2[z(d_2) + z(-d_2)] \\ 1 = k_1 \cdot 2 + k_2 \cdot 2 \end{cases}$$
 (A-1)



A-1. Interpolation using mono-dimensional estimation with different covariance functions. Dashed curve: covariance concave down. Continuous curve: covariance concave up.

The matrix of the system in this case of bounded minimum of the error is

Calling

$$a = R(0) - R(d_2 - d_1) \qquad c = R(d_2 + d_1) - R(2d_2) b = R(2d_1) - R(d_2 + d_1) \qquad d = R(d_1) - R(d_2)$$
 (A-3)

A-2. Possible covariance functions.

we have

$$k_1 = \frac{1}{2} \frac{a - c + 2d}{2a + b - c}$$
 $k_2 = \frac{1}{2} \frac{a + b - 2d}{2a + b - c}$ (A-4)

If we have extrapolation, k1, k2 must have opposite sign and therefore one of the two following sets of inequalities has to be true:

$$a + 2d - c > 0$$

 $a + b - 2d < 0$ or $a + 2d - c < 0$
 $a + b - 2d > 0$ (A-5)

Now let us suppose that in the range of interest (fig. A-2):

- (i) R(x) is concave upward
- (ii) R(x) is linear
- (iii) R(x) is concave downward

In case (i), a>b>c>d>0 and therefore we can never have extrapolation since

$$a + 2d - c > 0$$

$$a + b - 2d > 0$$
;

in case (ii), we have always $k_1 = 1/2$ and $k_2 = 0$;

in case (iii), 0 < a < b < c < d and therefore (A-5) is satisfied and we do have extrapolation.

This very simple example shows that, at least in this case, if we choose an exponential function for $R(\xi)$, the interpolated values will not exceed the range of the data; the opposite would have happened had we chosen for the covariance function a Gaussian of the type $R(\xi) = e^{-\xi^2/\xi_0}$ and also we had $d_1, d_2 < \xi_0.$

In the two-dimensional non-symmetric case, these results are probably still valid, but no definite proof is available at present. It is nonetheless intuitive that if the points which are the basis of the interpolation are at such distance from the point to be estimated that the covariance function taken at these points is still rather flat, the algorithm will tend to interpret the surface as locally very even; this may correspond to the strong extrapolation of local trends.

REFERENCES

AHLBERG, J. N., NILSSON, E. N., and WALSH, J. L., 1967, The theory of splines and their applications, Academic Press, New York.

CRAIN, E. R., 1972, Review of gravity and magnetic data processing systems, Journal of the Canadian Society of Exploration Geophysicists 8, 54-77.

HESSING, R. C., LEE, H. K., PIERCE, A., and POWERS, E. N., 1972, Automatic contouring using bicubic functions, Geophysics 37, 669-674.

MERRIL, R. D., 1973. Representation of contours and regions for efficient computer search. Communications Association for Computing Machinery, 16, 69-82.

MERRIAM, D. F., 1970, Geostatistic: a Colloquium, Plenum Press, New York.

PAPOULIS, A., 1968, Systems and transforms with applications to optics, Mc Graw Hill, New York.

A METHOD OF BIVARIATE INTERPOLATION AND SMOOTH SURFACE FITTING FOR VALUES GIVEN AT IRREGULARLY DISTRIBUTED POINTS

HIROSHI AKIMA

U.S. DEPARTMENT OF COMMERCE Rogers C. B. Morton, Secretary

Betsy Ancker Johnson, Ph. D. Assistant Secretary for Science and Technology

OFFICE OF TELECOMMUNICATIONS

John M. Richardson, Acting Director

August 1975

UNITED STATES DEPARTMENT OF COMMERCE OFFICE OF TELECOMMUNICATIONS STATEMENT OF MISSION

The mission of the Office of Telecommunications in the Department of Commerce is to assist the Department in fostering, serving, and promoting the nation's economic development and technological advancement by improving man's comprehension of telecommunication science and by assuring effective use and growth of the nation's telecommunication resources.

In carrying out this mission, the Office

- Conducts research needed in the evaluation and development of policy as required by the Department of Commerce
- Assists other government agencies in the use of telecommunications
- · Conducts research, engineering, and analysis in the general field of telecommunication science to meet government needs
- Acquires, analyzes, synthesizes, and disseminates information for the efficient use of the nation's telecommunication resources.
- Performs analysis, engineering and related administrative functions responsive to the needs of the Director of the Office of Telecommunications Policy, Executive Office of the President, in the performance of his responsibilities for the management of the radio spectrum
- Conducts research needed in the evaluation and development of telecommunication policy as required by the Office of Telecommunications Policy, pursuant to Executive Order 11556

ii

DATE SENSING

g data interpretation,

isern Brazil: Tectonic control

near infrared, Grohom R. Hunt eland and G. R. Johnson 514

cks in visible and near-infrared I Goetz, and Roger P. Ashley

art and trial application of factor in the northern part of the Incent

in the Salton Sea geothermal field ind,

inhomogeneous distribution of huttacharysa and K. C. Chan 602

by 2- and 3-dimensional equivalent-point method ration by

restivity logging tools

conducting evlinder excited by a

environment

gnetic anomalies due to arbitrary

R. Quershi with reply by authors

199

3 ration, 5 H Hard

TABLE OF CONTENTS

	Page
ABSTRACT	1
1. INTRODUCTION	2
2. DESCRIPTION OF THE METHOD	5
3. APPLICATIONS	8
4. CONCLUDING REMARKS	13
5. ACKNOWLEDGMENTS	14
APPENDIX A. INTERPOLATION IN A TRIANGLE	15
Basic Assumptions	15
Coordinate System Associated With the Triangle	17
Implementation of the Third Assumption	20
Determination of the Coefficients of the Polynomial	22
Step-by-Step Description of the Procedure	25
APPENDIX B. COMPUTER SUBPROGRAM PACKAGE	27
The IDBVIP Subroutine	28
The IDSFFT Subroutine	30
Fortran Listings of the Package	33
REFERENCES	51

A METHOD OF BIVARIATE INTERPOLATION AND SMOOTH SURFACE FITTING FOR VALUES GIVEN AT IRREGULARLY DISTRIBUTED POINTS

Hiroshi Akima*

Abstract -- A method of bivariate interpolation and smooth surface fitting is developed for z values given at points irregularly distributed in the x-y plane. The interpolating function is a fifth-degree polynomial in x and y defined in each triangular cell which has projections of three data points in the x-y plane as its vertexes. Each polynomial is determined by the given values of z and estimated values of partial derivatives at the vertexes of the triangle. Procedures for dividing the x-y plane into a number of triangles, for estimating partial derivatives at each data point, and for determining the polynomial in each triangle are described. A simple example of the application of the proposed method is shown. User information and Fortran listings are given on a computer subprogram package that implements the proposed method.

Key Words and Phrases — Bivariate interpolation, interpolation, partial derivative, polynomial, smooth surface fitting.

^{*} The author is with the Institute for Telecommunication Sciences, Office of Telecommunications, U.S. Department of Commerce, Boulder, Colorado 80302.

1. INTRODUCTION

In a previous study (Akima, 1974a,b), we developed a method of bivariate interpolation and smooth surface fitting. The method was designed in such a way that the resulting surface would pass through all the given data points. Adopting local procedures, it successfully suppressed undulations in the resulting surface which are very likely to appear in surfaces fitted by other methods. Like many other methods, however, this method also has a serious drawback. Applicability is restricted to cases where the values of the function are given at rectangular grid points in a plane; i.e., the values of z = z(x,y) must be given as $z_{ij} = z(x_i, y_j)$ in the x-y plane, where z_{i

The subject of the present study is bivariate interpolation and smooth surface fitting in the general case where the values of the function are given at irregularly distributed points in a plane; i.e., the case where the z values are given as $z_i = z(x_i, y_i)$, where $i = 1, 2, \ldots$, n. Despite potentially wide applicability of a method of bivariate interpolation and smooth surface fitting for irregularly distributed points, studies for developing such a method have not been active in the past.

Two types of approaches are possible; one using a single global function, and the other based on a collection of local functions. In the former approach, the procedure often becomes too complicated to manage as the number of given data points increases. Moreover, the resulting surface from the former sometimes exhibits excessive undulations. For these reasons, only the latter approach is considered in the present study.

2

conducting evlinder excited by a

tic anomalies due to arbitrary

ation, S. H. Ward

n Brazil: Tectonic control

ata interpretation.

Bengtsson and Nordbeck (1964) suggested a method based on partitioning the x-y plane into a number of triangles (each triangle having projections of three data points in the x-y plane as its vertexes) and on fitting a plane to the surface in each triangle. Obviously, the resulting surface is not smooth on the sides of the triangles although it is continuous. In addition, their suggestion for partitioning so that the sum of the lengths of the sides of these triangles be minimized is too complicated to implement.

Shepard (1968) suggested a method based on weighted averages of the given z values. The basic weighting function is the square of the reciprocal of the distance between the projection of each data point and that of the point at which interpolation is to be performed. The actual weighting function is an improvement of this basic weighting function in that the actual function corresponding to a distant data point vanishes. Through this improvement the originally global procedures in this method became local. This method has several desirable properties. It takes into account the "shadowing" of the influence of a data point by a nearer one in the same direction. It yields reasonable slopes at the given data points. However, it fails to produce a plane when all the given data points lie in a slanted plane; this property is considered to be a serious drawback.

In conjunction with variational problems containing second-order derivatives, Zlamal (1968) discussed an approximation procedure using fifth-degree polynomials in x and y over triangular regions in the x-y plane. To determine the coefficients of the polynomial for each triangle, he uses, in addition to the z values and the first and second partial derivatives (i.e., z_x , z_y , z_{xx} , z_{xy} , and z_{yy}) at the three vertexes of the triangle, three partial derivatives, each differentiated in the direction normal to one of the three sides of the triangle at the

midpoint of the side in question. The theory was generalized to (4m+1)st-degree polynomials for functions m-times continuously differentiable on a closed triangular domain by Zenisek (1970). Although a comprehensive interpolation method is not suggested in their papers, their papers were instrumental in stimulating portions of the ideas developed here.

In the present study, we develop and propose a method of bivariate interpolation and smooth surface fitting that is applicable to z values given at irregularly distributed points in the x-y plane. As in the method for rectangular grid points developed in the previous study (Akima, 1974a,b), the interpolating function used in the method proposed in the present study is also a smooth function; i.e., the interpolating function and its first-order partial derivatives are continuous. The proposed method is also based on local procedures. The surface resulting from the proposed method will pass through all the given data points.

In this report, the proposed method is outlined in section 2, with some mathematical details in Appendix A. A simple example that illustrates the application of the proposed method is shown in section 3. Some pertinent remarks are addressed in section 4. In Appendix B, user information and Fortran listings are given on the IDBVIP/IDSFFT subprogram package that implements the proposed method.

4

CS

OTE SENSING Walson, Editors

g data interpretation

bern Brazil: Tectonic control of t Offield, Elsa A. Abbon,

50

rear infrared, Graham R. Hunt sgiand and G. R. Johnson 514 rocks in visible and near-infrared H. Goetz, and Roger P. Ashley data, Robert K. Vincent 536 in the northern part of the L. Suripson 542

and trial application of factor

260

522

udy in the Salton Sea geothermal field

is in the Salton Sea geotherma

keneous distribution of

coused by 2- and 3-dimensional

ictive environment.

restivity logging took

tte, conducting cylinder excited by Rt. 661 netic anomalies due to arbitrary R. Querch with reply by authors

公司

683

ation, S. H. Ward 664

2. DESCRIPTION OF THE METHOD

In this method the x-y plane is divided into a number of triangular cells; each having projections of three data points in the plane as its vertexes, and a bivariate fifth-degree polynomial in x and y is applied to each triangular cell.

For a unique partitioning of the plane, the x-y plane is divided into triangles by the following steps. First, determine the nearest pair of data points and draw a line segment between the points. Next, find the nearest pair of data points among the remaining pairs and draw a line segment between these points if the line segment to be drawn does not cross any other line segment already drawn. Repeat the second step until all possible pairs are exhausted.

The z value in a triangle is interpolated with a bivariate fifthdegree polynomial in x and y, i.e.,

$$z(x,y) = \sum_{j=0}^{5} \sum_{k=0}^{5-j} q_{jk} x^{j} y^{k}$$
 (1)

The coefficients of the polynomial are determined by the given z values at the three vertexes of the triangle and the estimated values of partial derivatives z_x , z_y , z_{xx} , z_{xy} , and z_{yy} at the vertexes, together with the imposed condition that the partial derivative of z by the variable measured in the direction perpendicular to each side of the triangle be a polynomial of degree three, at most, in the variable measured along the side. The procedure for interpolation in a triangle including determination of the coefficients of the polynomial is described in detail in Appendix A. Smoothness of the interpolated values and therefore smoothness of the resulting surface along each side of the triangle is proved also in the Appendix.

Procedures for estimating the five partial derivatives locally at each data point are not unique. The derivatives could be determined as partial derivatives of a second-degree polynomial in x and y that coincides with the given z values at six data points consisting of five data points the projections of which are nearest to the projection of the data point in question and the data point itself. This procedure is a bivariate extension of the one used in the univariate osculatory interpolation (Ackland, 1915). Adoption of this procedure has an advantage that, when z is a second-degree polynomial in x and y, the method yields exact results. As will be shown in section 3, however, this procedure sometimes yields very unreasonable results.

We will take a different approach and estimate the partial derivatives in two steps; i.e., the first-order derivatives in the first step and the second-order derivatives in the second step. To estimate the first-order partial derivatives at data point Powe use several additional data points Pi (i = 1, 2, ..., nn) the projections of which are nearest to the projection of Po selected from all data points other than Po. We take two data points Pi and Pi out of the nn points and construct the vector product of PoPi and PoPi; i.e., a vector that is perpendicular to both PoPi and PoPi with the right-hand rule and has a magnitude equal to the area of the parallelogram formed by PoPi and PoPi. We take Pi and Pi in such a way that the resulting vector product always points upward (i.e., the component of the vector product is always positive). We construct vector products for all possible combinations of PoPi and PoPi (i f j) and take a vector sum of all the vector products thus constructed. Then, we assume that the first-order partial derivatives z_x and z_y at P₀ are estimated as those of a plane that is normal to the resultant vector sum thus composed. Note that, when $n_n = 2$, the estimated z_x and z_y are equal to the partial

6

CS

OTE SENSING

ig data interpretation,
hern Brazil: Tectonic control of
F. Offield, Elsa A. Abbott,

ar infrared, Groham R. Hunt and and G. R. Johnson 514 ocks in visible and near-infrared H. Goetz, and Roger P. Ashley data, Robert K. Vincent 536 in the northern part of the L. Sumpson 542

iseth 560

udy in the Salton Sea geothermal field

vient, Lucien J. B. LaCoste inhomogeneous distribution hattacharyya and K. C. Char ecaused by 2- and 3-dimensic

restivity logging tools,

ctive environment.

it, conducting evlinder excited by a
24 661
netic anomalies due to arbitrary
R. Quershi with reply by authors 66

tion, S. H. Ward 664 E. Sheriff 667 derivatives of a plane that passes through P_0 , P_1 , and P_2 . Also note that, when $n_n = 3$ and the projection of P_0 in the x-y plane lies inside the triangle formed by the projections of P_1 , P_2 , and P_3 , the estimated z_x and z_y are equal to the partial derivatives of a plane that passes through P_1 , P_2 , and P_3 .

In the second step, we apply the procedure of "partial differentiation" described in the preceding paragraph to the estimated z_x values at P_i ($i=0,1,2,\ldots,n_n$) and obtain estimates of $z_{xx}=(z_x)_x$ and $z_{xy}=(z_x)_y$ at P_0 . We repeat the same procedure for the estimated z_y values and obtain estimates of $z_{xy}=(z_y)_x$ and $z_{yy}=(z_y)_y$. We adopt a simple arithmetic mean of two z_{xy} values thus estimated as our estimate for z_{xy} at P_0 .

The selection of n_n is again not unique. Obviously, n_n cannot be less than 2. Also, it must be less than the total number of data points. Other than those, there seems to exist no theory that dictates a definite value for n_n . The best we can say is that, based on the example to be shown in section 3 and on some others, we recommend a number between 3 and 5 (inclusive) for n_n .

3. APPLICATIONS

Using a simple example taken from the previous study (Akima, 1974 a, b), we illustrate the application of the proposed method. We take a quarter of the surface shown in the example in the previous study and sample 50 data points from the surface randomly. coordinate values of the sampled data points are shown in table 1. Knowing from the physical nature of the phenomenon that z(x, y) is a single-valued smooth function of x and y, we try to interpolate the z values and to fit a smooth surface to the given data points.

Figure 1 depicts contour maps of the surfaces resulting from the 30 data points with asterisks in table 1, while figure 2, from all the 50 data points in the table. In these contour maps, projections of the data points are marked with encircled points. In each figure, the original surface from which the data points were sampled is shown in (a). The surface fitted with piecewise planes (i.e., the surface consisting of a number of pieces of planes, each applicable to one triangle) is shown in (b). Of course, such a surface is continuous but not smooth. The surface fitted by the method that estimates the partial derivatives with a second-degree polynomial is shown in (c). The surfaces fitted by the proposed method using three, four, and five additional data points for estimation of partial derivatives at each data point are shown in (d), (e), and (f), respectively. In drawing these contour maps, the z values were interpolated by their respective methods at the nodes of a grid consisting of 100 by 80 squares; in each square, the z values were interpolated linearly.

Figures 1 and 2 indicate that the proposed method yields reasonable results although these results might not necessarily be satisfactory for some applications. In these figures very little difference is

8

=0

=0

=(

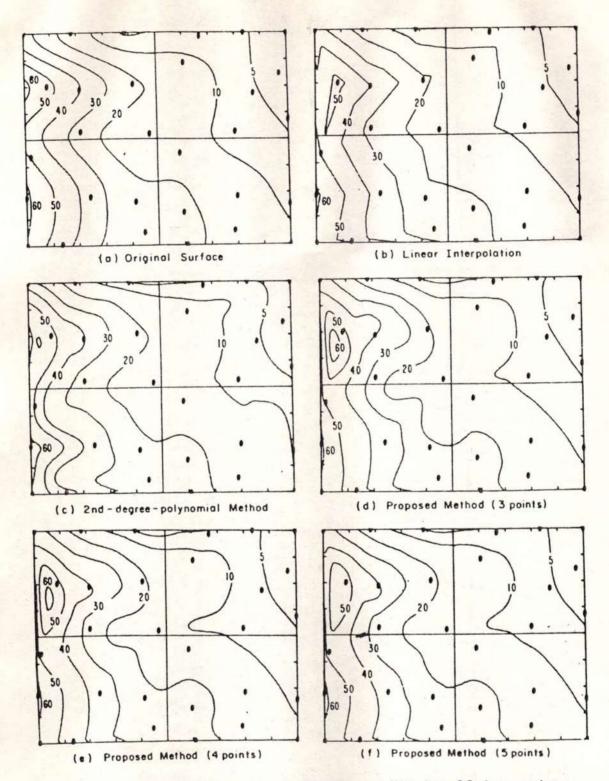
E.ditors

infrared, Groham R. Hunt Brazil: Tectonic control 13 interpretation

d and G. R. Johnson son 542 the .. alton Sea geothermal field

ed by 2- and 3-dimensional

ity logging took


663 Quershi with reply by authors ş

Sheriff

Table 1. An example set of data points.

(Thirty points with asterisks are used in figure 1, while all 50 points are used in figure 2.)

i		×i	Уi	z _i	i	×i	Уi	z _i
1	*	11.16	1.24	22.15	26	3.22	16.78	39.93
2	*	24.20	16.23	2.83	27 *	0.00	0.00	58.20
3		12.85	3.06	22.11	28 *	9.66	20.00	4.73
4	*	19.85	10.72	7.97	29	2.56	3.02	50.55
5	*	10.35	4.11	22.33	30 *	5.22	14.66	40.36
6		24.67	2.40	10.25	31 *	11.77	10.47	13.6
7	*	19.72	1.39	16.83	32	17.25	19.57	6.43
8		15.91	7.74	15.30	33 *	15.10	17.19	12.5
9	2/4	0.00	20.00	34.60	34 *	25.00	3.87	8.7
10	炸	20.87	20.00	5.74	35	12.13	10.79	13.7
11		6.71	6.26	30.97	36 *	25.00	0.00	12.0
12		3.45	12.78	41.24	37	22.33	6.21	10.2
13	*	19.99	4.62	14.72	38	11.52	8.53	15.7
14		14.26	17.87	10.74	39 *	14.59	8.71	14.8
15	*	10.28	15.16	-21.59	40 *	15.20	0.00	21.6
16	*	4.51	20.00	15.61	41	7.54	10.69	19.3
17		17.43	3.46	18.60	42 *	5.23	10.72	26.5
18		22.80	12.39	5.47	43	17.32	13.78	12.1
19	*	0.00	4.48	61.77	44 *	2.14	15.03	53.1
20		7.58	1.98	29.87	45 *	0.51	8.37	49.4
		16.70	19.65	6.31	46	22.69	19.63	3.2
	*	6.08	4.58	35.74	47 *	25.00	20.00	0.6
23		1.99	5.60	51.81	48	5.47	17.13	28.6
24			11.87	4.40	49 *	21.67	14.36	5.5
25	*	14.90	3.12	21.70	50 ≄	3.31	0.13	44.0

Contour maps for the surfaces fitted to 30 data points given with asterisks in table 1.

10

art and trial application of factor

860

L. Simpson

niv in the Salton Sea geothermal field,

nhe sugeneous distribution of to scharyya and K. C. Chan 602 stem, I .c.en J. B. LaCoste 594

caused by 2- and 3-dimensional

restivity logging tools,

ctive environment.

netic anomalies due to arbitrary

R. Quershi with reply by authors 663

lion, S. H. Word 664

te, conducting estinder excited by a

501

irared, Graham R. Huni

pern Brazil: Tectonic control of

data interpretation

OTE SENSING

, and G. R. Johnson 514

, in visible and near-infrared Goetz, and Roger P. Ashley 522

dat Robert K. Vincent 536 L. Simpson 542

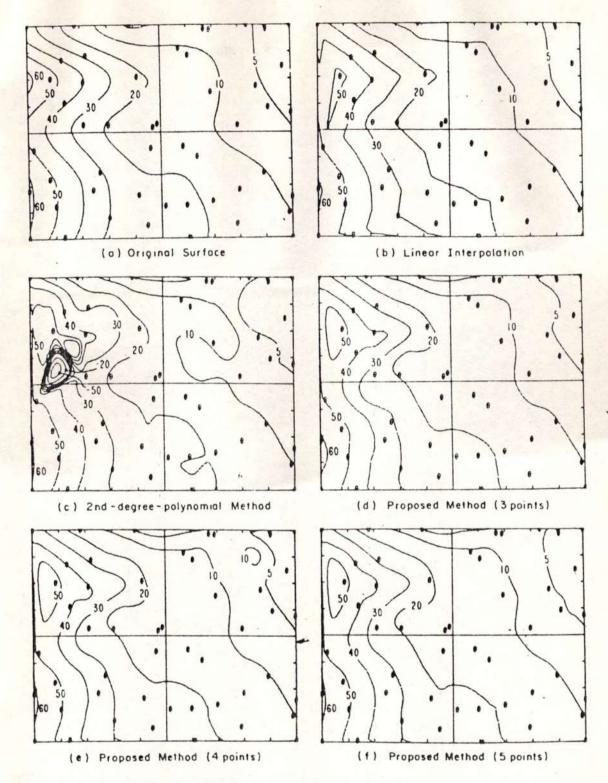


Figure 2. Contour maps for the surfaces fitted to 50 data points given in table 1.

exhibited in the resulting surfaces due to the difference in the number of data points used for the estimation of partial derivatives in the proposed method. Figures 1(c) and 2(c) demonstrate a peculiar idiosyncracy of the method based on second-degree polynomials; more data points yield a much worse result in this example.

Decision as to whether or not the proposed method is applicable to a particular problem rests on each prospective user of the method. The examples given here are expected to aid one in making such a decision. Comparison of (d), (e), or (f) fitted by the proposed method with (a) the original surface or (b) the piecewise-plane surface in each figure should be helpful for such a decision. Also, comparison of figures 1 and 2 gives one some idea on the dependence of the resulting surfaces upon the total number of data points and the complexity of original surfaces.

12

SENSING

on, Editors

Brazil: Tectonic control of yfield, Elsa A. Abbott. in interpretation.

sible and near-infrared and G. R. Johnson 514 tz. and Roger P. Ashley infrared, Graham R.

50

bert K. Vincent thern part of the

522

trial application of factor

Iton Sea geothermal field.

homogeneous distribution of aus. 3 by 2- and 3-dimensional em, Lucien J. B. LaCoste

equivalent-point method 10

stivity logging took,

live environment.

699 conducting cylinder excited by a retic anomalies due to arbitrary 199

Z E. Sheriff 667

4. CONCLUDING REMARKS

We have described a method of bivariate interpolation and smooth surface fitting that is applicable when z values are given at points irregularly distributed in an x-y plane. For proper application of the method, the following remarks seem pertinent:

- (i) The method does not smooth the data. In other words, the resulting surface passes through all the given points if the method is applied to smooth surface fitting. Therefore, the method is applicable only when the precise z values are given or when the errors are negligible.
- (ii) As is true for any method of interpolation, the accuracy of interpolation cannot be guaranteed, unless the method in question has been checked in advance against precise values or a functional form.
- (iii) The result of the method is invariant under a rotation of the x-y coordinate system.
- (iv) The method is linear. In other words, if z(x_i,y_i) = a z'(x_i,y_i) + b z''(x_i,y_i) for all i, the interpolated values satisfy z(x,y) = a z'(x,y) + b z''(x,y), where a and b are arbitrary real constants.

- (v) The method gives exact results when z(x,y) represents a plane; i.e., $z(x,y) = a_{00} + a_{10}x + a_{01}y$, where a_{00} , a_{10} , and a_{01} are arbitrary real constants.
- (vi) The method requires only straightforward procedures. No problem concerning computational stability or convergence exists in the application of the method.

A computer subprogram package that implements the proposed method is described in Appendix B.

ACKNOWLEDGMENTS

The author is grateful to James C. Ferguson of Teledyne-Ryan Aeronautical, San Diego, California, for his information concerning the past works in the subject field. He is also grateful to Rayner K. Rosich and Vincent D. Wayland of the Office of Telecommunications, Boulder, Colorado, for their helpful discussions and critical reviews of this report.

14

SENSING

ta interpretation.

Brazil: Tectonic control of

rred, Graham R. Huni G. R. Johnson 514

522 2. and Roger P. Ashley .. ible and near-infrared

bert K. Vincent 536 Simpse \$42

application of factor and tri in the valton Sea geothermal field,

schuryga and K. C. Chan 602 used by 2- and 3-dimensional on by equivalent-point method omogeneous distribution of

tivity ingging tools,

ve environment,

conducting evlinder excited by a 199

Quershi with reply by authors

663

APPENDIX A

INTERPOLATION IN A TRIANGLE

Assuming that the plane is divided into a number of triangles, we describe a procedure for interpolating values of a function in each triangle. The primary emphasis is on the smoothness of the interpolated values not only inside of the triangle but also on the side of it; i.e., the interpolated values in a triangle must smoothly connect with those values in an adjacent triangle on the common side of two triangles.

Basic Assumptions.

Using a two-dimensional Cartesian coordinate system with x and y axes, we describe the basic assumptions as follows:

(i) The value of the function at point (x, y) in a triangle is interpolated by a bivariate fifth-degree polynomial in x and y; i.e.,

$$z(x,y) = \sum_{j=0}^{5} \sum_{k=0}^{5-j} q_{jk} x^{j} y^{k}. \qquad (A-1)$$

Note that there are 21 coefficients to be determined.

- (ii) The values of the function and its first-order and secondorder partial derivatives (i.e., z, z_x, z_y, z_{xx}, z_{xy}, and
 z_{yy}) are given at each vertex of the triangle. This assumption yields 18 independent conditions.
- (iii) The partial derivative of the function differentiated in the direction perpendicular to each side of the triangle is a polynomial of degree three, at most, in the variable measured in the direction of the side of the triangle. In other words, when the coordinate system is transformed to another Cartesian system, which we call the s-t system, in such a

way that the s axis is parallel to each of the side of the triangle, the bivariate polynomial in s and t representing the z values must satisfy

$$z_{tsss} = 0$$
. (A-2)

Since a triangle has three sides, this assumption yields three additional conditions.

The purpose of the third assumption is two-fold. This assumption adds three independent conditions to the 18 conditions dictated by the second assumption and, thus, enables one to determine the 21 coefficients of the polynomial. It also assures smoothness of interpolated values as described in the following paragraph.

We will prove smoothness of the interpolated values and therefore smoothness of the resulting surface along the side of the triangle. Since the coordinate transformation between the x-y system and the s-t system is linear, the values of zx, zy, zxx, zxy, and zyy at each vertex uniquely determine the values of zs, zt, zss, zst, and zt at the same vertex, each of the latter as a linear combination of the former. Then, the z, z, and z, values at two vertexes uniquely determine a fifthdegree polynomial in s for z on the side between these vertexes. Since two fifth degree polynomials in x and y representing z values in two triangles that share the common side are reduced to fifth-degree polynomials in s on the side, these two polynomials in x and y coincide with each other on the common side. This proves continuity of the interpolated z values along a side of a triangle. Similarly, the values of z, and z_{st} = (z_t)_s at two vertexes uniquely determine a third-degree polynomial in s for zt on the side. Since the polynomial representing zt is assumed to be third degree at most with respect to s, two polynomials representing zt in two triangles that share the common side also

16

OTE SENSING

thern Brazil: Tertonic control

ng data interpretation

Franks in visible and near-infrared near infrared, Grohom R. land and G. R. Johnson northern part of the

3

in the Salton Sea geothermal field

conducting extinder excited by

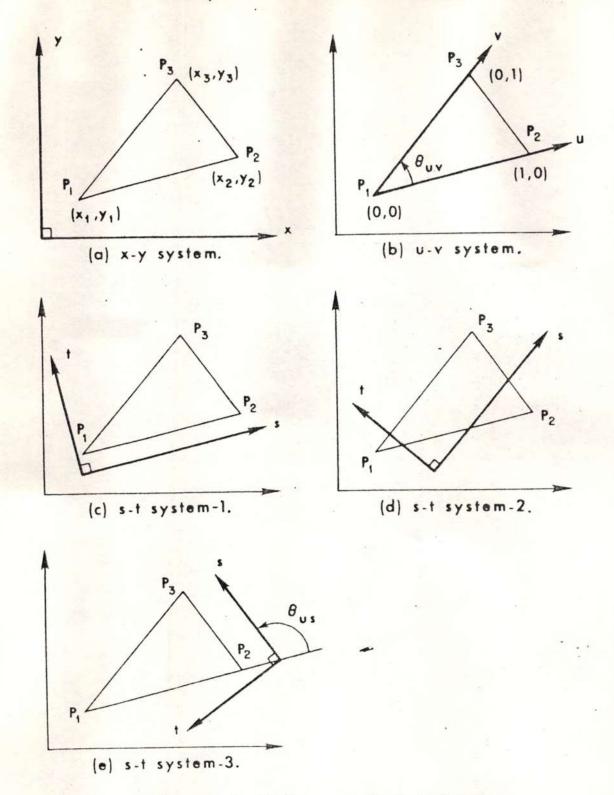
coincide with each other on the side. This proves continuity of z_t and thus smoothness of z along the side of the triangle.

Coordinate System Associated With the Triangle.

We denote the vertexes of the triangle by V_1 , V_2 , and V_3 in a counter-clockwise order, and their respective coordinates in the x-y Cartesian coordinate system by (x_1,y_1) , (x_2,y_2) , and (x_3,y_3) , as shown in figure A-1(a). We introduce a new coordinate system associated with the triangle, where the vertexes are represented by (0,0), (1,0), and (0,1) as shown in figure A-1(b). We call this new system the u-v system.

The coordinate transformation between the x-y system and the u-v system is represented by

$$x = au + bv + x_0$$
,
 $y = cu + dv + y_0$, (A-3)


where

$$a = x_2 - x_1$$
,
 $b = x_3 - x_1$,
 $c = y_2 - y_1$,
 $d = y_3 - y_1$,
 $x_0 = x_1$,
 $x_0 = y_1$.

The inverse relation is

$$u = [d(x-x_0) - b(y-y_0)]/(ad-bc),$$

$$v = [-c(x-x_0) + a(y-y_0)]/(ad-bc).$$
(A-5)

Various coordinate systems. Figure A-1.

18

lata interpretation.

50!

application of factor

3

y in the Salton Sea geothermal field,

homogeneous distribution of stack in the stack is the stack in the sta

estivity logging tools,

tive environment

e, conducting exlinder excited by a

The partial derivatives in the x-y system are transformed to the u-v system by

$$z_{u} = a z_{x} + c z_{y}$$
,
 $z_{v} = b z_{x} + d z_{y}$,
 $z_{uu} = a^{2} z_{xx} + 2 a c z_{xy} + c^{2} z_{yy}$, (A-6)
 $z_{uv} = a b z_{xx} + (a d + b c) z_{xy} + c d z_{yy}$,
 $z_{vv} = b^{2} z_{xx} + 2 b d z_{xy} + d^{2} z_{yy}$.

Since this coordinate transformation is linear, the interpolating polynomial (A-1) is transformed to

$$z(u, v) = \sum_{j=0}^{5} \sum_{k=0}^{5-j} p_{jk} u^{j} v^{k}$$
 (A-7)

Since it is the p coefficients that are determined directly, as shown later, and are used for interpolating z values, it is unnecessary to relate the p coefficients to the q coefficients used in (A-1).

The partial derivatives of z(u, v) in the u-v system are expressed by

$$\begin{split} z_{\mathbf{u}}(\mathbf{u}, \mathbf{v}) &= \sum_{j=1}^{5} \sum_{k=0}^{5-j} j \, \mathbf{p}_{jk} \, \mathbf{u}^{j-1} \, \mathbf{v}^{k} \,, \\ z_{\mathbf{v}}(\mathbf{v}, \mathbf{v}) &= \sum_{j=0}^{4} \sum_{k=1}^{5-j} k \, \mathbf{p}_{jk} \, \mathbf{u}^{j} \, \mathbf{v}^{k-1} \,, \\ z_{\mathbf{u}\mathbf{u}}(\mathbf{u}, \mathbf{v}) &= \sum_{j=2}^{5} \sum_{k=0}^{5-j} j \, (j-1) \, \mathbf{p}_{jk} \, \mathbf{u}^{j-2} \, \mathbf{v}^{k} \,, \\ z_{\mathbf{u}\mathbf{v}}(\mathbf{u}, \mathbf{v}) &= \sum_{j=1}^{4} \sum_{k=1}^{5-j} j \, k \, \mathbf{p}_{jk} \, \mathbf{u}^{j-1} \, \mathbf{v}^{k-1} \,, \end{split}$$

$$z_{vv}(u,v) = \sum_{j=0}^{3} \sum_{k=2}^{5-j} k(k-1) p_{jk} u^{j} v^{k-2}$$
.

We denote the lengths of the unit vectors in the u-v system (i.e., the lengths of sides $\overline{V_1V_2}$ and $\overline{V_1V_3}$) by L_u and L_v , respectively, and the angle between the u and v axes by θ_{uv} . They are given by

$$L_{u} = a^{2} + c^{2}$$
,
 $L_{v} = b^{2} + d^{2}$, (A-9)
 $\theta_{uv} = tan^{-1}(d/b) - tan^{-1}(c/a)$,

where a, b, c, and d are constants given in (A-4).

Implementation of the Third Assumption.

We represent the third assumption (A-2) in the u-v system and derive useful equations for determining the coefficients of the polynomial. We do this for three cases corresponding to the three sides of the triangle.

First, we consider the case where the s axis is parallel to side $\overline{V_1V_2}$, as shown in figure A-1(c). The coordinate transformation between the u-v system and the s-t system is expressed by

$$u = [(\sin \theta_{uv})(s - s_0) - (\cos \theta_{uv})(t - t_0)] / (L_u \sin \theta_{uv}),$$

$$v = (t - t_0) / (L_v \sin \theta_{uv}),$$
(A-10)

where L_u , L_v , and θ_{uv} are constants given in (A-9). Partial derivatives with respect to s and t are expressed by

$$\frac{\partial}{\partial s} = \frac{1}{L_{u}} \frac{\partial}{\partial u},$$

$$\frac{\partial}{\partial t} = -\frac{\cos \theta_{uv}}{L_{u} \sin \theta_{uv}} \frac{\partial}{\partial u} + \frac{1}{L_{v} \sin \theta_{uv}} \frac{\partial}{\partial v},$$
(A-11)

respectively. From $(A-2)_{\tau}$ (A-7), and (A-11), we obtain

$$L_{u} P_{41} - 5 L_{v} \cos \theta_{uv} P_{50} = 0. \tag{A-12}$$

Next, we consider the case where the saxis is parallel to side $\overline{V_1V_3}$, as shown in figure A-1(d). The coordinate transformation is expressed by

$$u = -(t - t_0) / (L_u \sin \theta_{uv}),$$

$$v = [(\sin \theta_{uv})(s - s_0) + (\cos \theta_{uv})(t - t_0)] / (L_v \sin \theta_{uv}).$$
(A-13)

Partial derivatives are expressed by

$$\frac{\partial}{\partial s} = \frac{1}{L_{v}} \frac{\partial}{\partial v},$$

$$\frac{\partial}{\partial t} = -\frac{1}{L_{u} \sin \theta_{uv}} \frac{\partial}{\partial u} + \frac{\cos \theta_{uv}}{L_{v} \sin \theta_{uv}} \frac{\partial}{\partial v},$$
(A-14)

Then, from (A-2), (A-7), and (A-14), we obtain

$$L_{\mathbf{v}} P_{14} - 5 L_{\mathbf{u}} \cos \theta_{\mathbf{u}\mathbf{v}} P_{05} = 0$$
 (A-15)

Next, we consider the third case where the s axis is parallel to side $\overline{V_2V_3}$, as shown in figure A-1(e). The coordinate transformation is expressed by

$$u = A(s - s_0) + B(t - t_0),$$

 $v = C(s - s_0) + D(t - t_0),$ (A-16)

where

$$A = \sin(\theta_{uv} - \theta_{us}) / (L_u \sin \theta_{uv}),$$

$$B = -\cos(\theta_{uv} - \theta_{us}) / (L_u \sin \theta_{uv}),$$

$$C = \sin \theta_{us} / (L_v \sin \theta_{uv}),$$

$$D = \cos \theta_{us} / (L_v \sin \theta_{uv}),$$

$$(A-17)$$

$$\theta_{y,s} = \tan^{-1}[(d-c)/(b-a)] - \tan^{-1}(c/a)$$
.

The θ_{us} constant is the angle between the s and the u axes. The a, b, c, and d constants are given in (A-4), and L_u , L_v , and θ_{uv} are given in (A-9). Partial derivatives with respect to s and t are expressed by

$$\frac{\partial}{\partial s} = A \frac{\partial}{\partial u} + C \frac{\partial}{\partial v},$$

$$\frac{\partial}{\partial t} = B \frac{\partial}{\partial u} + D \frac{\partial}{\partial v}.$$
(A-18)

From (A-2), (A-7), and (A-18), we obtain

$$5 A^4 B P_{50} + A^3 (4 B C + A D) P_{41} + A^2 C (3 B C + 2 A D) P_{32}$$

+ $A C^2 (2 B C + 3 A D) P_{23} + C^3 (B C + 4 A D) P_{14} + 5 C^4 D P_{05} = 0$. (A-19)

Equations (A-12), (A-15), and (A-19) are the results of implementation of the third assumption (A-2) in the u-v coordinate system. They are used for determining the coefficients of the polynomial (A-7).

Determination of the Coefficients of the Polynomial.

Obviously, we can determine the coefficients of the lower-power terms by letting u = 0 and v= 0 and by inserting the values of z, zu, z_{v} , z_{uu} , z_{uv} , and z_{vv} at V_{1} (i.e., u = 0 and v = 0) in (A-7) and (A-8). The results are

$$p_{00} = z(0,0)$$
,
 $p_{10} = z_{u}(0,0)$,
 $p_{01} = z_{v}(0,0)$,
 $p_{20} = z_{uu}(0,0) / 2$,

(A-20)

22

$$p_{11} = z_{uv}(0,0),$$

 $p_{02} = z_{vv}(0,0)/2.$

Next, letting u = 1 and v = 0 and inserting the values of z, z_u , and z_{uu} at V_2 (i.e., u = 1 and v = 0) in (A-7) and the first and the third equations in (A-8), we obtain the following three equations:

$$P_{30} + P_{40} + P_{50} = z(1,0) - P_{00} - P_{10} - P_{20}$$
,
 $3 P_{30} + 4 P_{40} + 5 P_{50} = z_{u}(1,0) - P_{10} - 2 P_{20}$,
 $6 P_{30} + 12 P_{40} + 20 P_{50} = z_{uu}(1,0) - 2 P_{20}$.

Solving these equations with respect to p30, p40, and p50, we obtain

$$P_{30} = \left[20 z(1,0) - 8 z_{u}(1,0) + z_{uu}(1,0) - 20 p_{00} - 12 p_{10} - 6 p_{20} \right] / 2,$$

$$P_{40} = -15 z(1,0) + 7 z_{u}(1,0) - z_{uu}(1,0) + 15 p_{00} + 8 p_{10} + 3 p_{20},$$

$$P_{50} = \left[12 z(1,0) - 6 z_{u}(1,0) + z_{uu}(1,0) - 12 p_{00} - 6 p_{10} - 2 p_{20} \right] / 2.$$

$$(A-21)$$

Since p_{00} , p_{10} , and p_{20} are already determined by (A-20), we can calculate p_{30} , p_{40} , and p_{50} from (A-21).

Similarly, using the values of z, z_v , and z_{vv} at V_3 (i.e., u=0 and v=1) and working with (A-7) and the second and the last equations in (A-8), we obtain

$$P_{03} = \left[20 z(0,1) - 8 z_{v}(0,1) + z_{vv}(0,1) - 20 p_{00} - 12 p_{01} - 6 p_{02} \right] / 2,$$

$$P_{04} = -15 z(0,1) + 7 z_{v}(0,1) - z_{vv}(0,1) + 15 p_{00} + 8 p_{01} + 3 p_{02},$$

$$P_{05} = \left[12 z(0,1) - 6 z_{v}(0,1) + z_{vv}(0,1) - 12 p_{00} - 6 p_{01} - 2 p_{02} \right] / 2.$$

$$(A-22)$$

With P50 and P05 determined, we can determine P41 and P14 from (A-12) and (A-15), respectively. The results are

$$P_{41} = \frac{5 L_{v} \cos \theta_{uv}}{L_{u}} P_{50},$$

$$P_{14} = \frac{5 L_{u} \cos \theta_{uv}}{L_{v}} P_{05}.$$
(A-23)

Next, we use the values of z_v and z_{uv} at V_2 (i.e., u = 1 and v = 0) with the second and the fourth equations in (A-8) and obtain

$$p_{21} + p_{31} = z_v(1,0) - p_{01} - p_{11} - p_{41}$$
,
 $2p_{21} + 3p_{31} = z_{uv}(1,0) - p_{11} - 4p_{41}$.

Solving these equations, we obtain

$$P_{21} = 3 z_v(1,0) - z_{uv}(1,0) - 3 p_{01} - 2 p_{11} + p_{41},$$

$$P_{31} = -2 z_v(1,0) + z_{uv}(1,0) + 2 p_{01} + p_{11} - 2 p_{41}.$$
(A-24)

Similarly, using the values of z_u and z_{uv} at V_3 (i.e., u = 0 and v = 1) with the first and the fourth equations in (A-8), we obtain

$$p_{12} = 3 z_{u}(0,1) - z_{uv}(0,1) - 3 p_{10} - 2 p_{11} + p_{14},$$

$$p_{13} = -2 z_{u}(0,1) + z_{uv}(0,1) + 2 p_{10} + p_{11} - 2 p_{14}.$$
(A-25)

Equation (A-19) is rewritten as

$$g_1 p_{32} + g_2 p_{23} = h_1$$
, (A-26)

where

$$g_1 = A^2 C (3 BC + 2 AD)$$
,
 $g_2 = AC^2 (2 BC + 3 AD)$, (A-27)

24

501

. the Salton Sea geothermal field

$$h_1 = -5 A^4 BP_{50} - A^3 (4BC + AD)P_{41}$$

$$- C^3 (BC + 4AD)P_{14} - 5C^4 DP_{05},$$

with A, B, C, and D defined by (A-17). From the value of z_{vv} at V_2 and the last equation in (A-8), we obtain

$$p_{22} + p_{32} = h_2$$
, (A-28)

where

$$h_2 = (1/2) z_{vv}(1,0) - p_{02} - p_{12}$$
 (A-29)

Similarly, from the value of z_{uu} at V_3 and the third equation in (A-8), we obtain

$$p_{22} + p_{23} = h_3$$
, (A-30)

where

$$h_3 = (1/2)z_{uu}(0,1) - p_{20} - p_{21}$$
 (A-31)

Solving (A-26), (A-28), and (A-30) with respect to p_{22} , p_{32} , and p_{23} , we obtain

$$P_{22} = (g_1 h_2 + g_2 h_3 - h_1)/(g_1 + g_2),$$

$$P_{32} = h_2 - P_{22},$$

$$P_{23} = h_3 - P_{22},$$
(A-32)

with g₁, g₂, h₁, h₂, and h₃ given by (A-27), (A-29), and (A-31).

Step-by-Step Description of the Procedure.

In summary, the coefficients of the polynomial are determined by the following steps:

(i) Determine a, b, c, and d (coefficients for coordinate transformation) from (A-4).

- (ii) Calculate partial derivatives zu, zv, zuu, zuv, and zvy from (A-6).
- (iii) Calculate L_u , L_v , and θ_{uv} (constants associated with the u-v coordinate system) from (A-9).
- (iv) Calculate A, B, C, and D (coefficients for another coordinate transformation) from (A-17).
- (v) Determine 18 coefficients of the polynomial from (A-20), (A-21), (A-22), (A-23), (A-24), and (A-25) -- in this order.
- (vi) Calculate g₁, g₂, h₁, h₂, and h₃ from (A-27), (A-29), and (A-31).
- (vii) Determine the remaining three coefficients from (A-32).

For a given point (x,y) in the triangle, one can interpolate the z value by the following steps:

- (i) Transform x and y to u and v by (A-5) with necessary coefficients given by (A-4).
- (ii) Evaluate the polynomial for z(u, v) given in (A-7).

Although some equations look complicated, the procedure described here is straightforward. It can easily be implemented as a computer subroutine.

nern Brazil: Tectonic control of

Mala interpretation.

infrared, Graham R. Hunt ngland and G. R. Johnson

50

522

nd trial application of factor

560

26

in the Salton Sea geothermal field

restivity logging tools

Suctive environment.

nite, conducting extinder excited by a

APPENDIX B

COMPUTER SUBPROGRAM PACKAGE

User information and Fortran listings of the IDBVIP/IDSFFT subprogram package are given in this appendix. This package implements the method of bivariate interpolation and smooth surface fitting for irregularly distributed data points, described in section 2 of this report. It is written in ANSI Standard Fortran (ANSI, 1966).

The package consists of a block-data subprogram and the following six subroutines; i.e., IDBVIP, IDGEOM, IDLCTN, IDPDRV, IDPTIP, and IDSFFT. Two subroutines, IDBVIP and IDSFFT, are the master subroutines of the package, and each interfaces with the user. The remaining four subroutines are common supporting subroutines called by IDBVIP and IDSFFT. The IDBVIP subroutine performs bivariate interpolation for irregularly distributed data points; it estimates the z values at the specified points in the x-y plane. The IDSFFT subroutine performs smooth surface fitting; it estimates, the z values at the specified rectangular grid points in the x-y plane and generates a doubly-dimensioned array containing these estimated values.

The package includes three common blocks; i.e., IDGM, IDNN, and IDPI. Including these common areas, the package occupies approximately 3200 locations on the CDC-6600 computer.

When the user wishes to call either IDBVIP or IDSFFT subroutine repeatedly with identical data as parts of input data in two consecutive calls, he can save computation times considerably by specifying an appropriate mode of computation. (This mode is specified with the MD parameter in the call statements to be described later.)

User information on IDBVIP and that of IDSFFT will follow. This information is followed by Fortran listings of the seven subprograms --six subroutines listed in alphabetical order, followed by the block-data subprogram.

The IDBVIP Subroutine.

This subroutine performs bivariate interpolation when the projections of the data points in the x-y plane are irregularly distributed in the plane.

This subroutine is called by the following statement:

CALL IDBVIP (MD, NDP, XD, YD, ZD, WK, NIP, XI, YI, ZI-)

In this call statement, the input parameters are

MD = mode of computation (must be 1, 2, or 3),

= 1 for new XD-YD,

= 2 for old XD-YD, new XI-YI,

= 3 for old XD-YD, old XI-YI,

NDP = number of data points (must be 4 or greater),

XD = array of dimension NDP containing the x coordinates of the data points,

= array of dimension NDP containing the y coordinates of the data points,

= array of dimension NDP containing the z coordinates. ZD of the data points,

WK = array of dimension (2 * NDP + NNP +5) * NDP + NIP to be used internally as a work area,

NIP = number of points to be interpolated at (must be 1 or greater),

3

alton Sea geothermal field,

restivity logging tools

663

- __XI = array of dimension NIP containing the x coordinates
 of the points to be interpolated at,
 - YI ·= array of dimension NIP containing the y coordinates
 of the points to be interpolated at,

where NNP is the number of additional data points used for estimating partial derivatives at each data point. The output parameter is

ZI = array of dimension NIP, where the z coordinates
of the interpolated points will be stored.

The LUN constant in the data initialization statement is the logical unit number of the standard output unit and is, therefore, system dependent. The user must enter an appropriate number into LUN before compiling this subroutine.

The value of NNP must be given through the IDNN common block.

NNP must be 2 or greater, but smaller than NDP. In the subprogram

package listed below, it is set to 4. The user can change it by declaring

COMMON/IDNN/NNP

in his calling program and by assigning a number of his choice to NNP with an arithmetic assignment statement before the call to IDBVIP.

The call to this subroutine with MD = 2 must be preceded by another call to this subroutine with the same NDP value and with the same contents of the XD and YD arrays. The fall with MD = 3 must be preceded by another call with the same NDP and NIP values and with the same contents of the XD, YD, XI, and YI arrays. Between the call with MD = 2 or 3 and its preceding call, the WK array should not be disturbed.

Table B-1 (p. 32) shows the approximate computation times required on the CDC-6600 computer.

The IDSFFT Subroutine.

This subroutine performs smooth surface fitting when the projections of the data points in the x-y plane are irregularly distributed in the plane.

This subroutine is called by the following statement:

CALL IDSFFT (MD, NDP, XD, YD, ZD, WK, NXI, NYI, XI, YI, ZI)

In this call statement, the input parameters are

MD = mode of computation (must be 1, 2, or 3),

= 1 for new XD-YD,

= 2 for old XD-YD, new XI-YI,

= 3 for old XD-YD, old XI-YI,

NDP = number of data points (must be 4 or greater),

XD = array of dimension NDP containing the x coordinates of the data points,

= array of dimension NDP containing the y coordinates of the data points,

ZD = array of dimension NDP containing the z coordinates of the data points,

WK = array of dimension (2 * NDP + NNP + 5) * NDP + NXI *NYI to be used internally as a work area,

NXI = number of output grid points in the x coordinate (must be 1 or greater),

NYI = number of output grid points in the y coordinate (must be 1 or greater),

= array of dimension NXI containing the x coordinates XI of the output grid points,

= array of dimension NYI containing the y coordinates YI of the output grid points,

30

Brazil: Tectonic control

lata interpretation.

infrared, Graham R. Hunt

salton Sea geothermal field,

366

estivity logging took

ctive environment

where NNP is the number of additional data points used for estimating partial derivatives at each data point. The output parameter is

ZI = doubly-dimensioned array of dimension (NXI, NYI), where the interpolated z values at the output grid points will be stored.

The LUN constant in the data initialization statement is the logical unit number of the standard output unit and is, therefore, system dependent. The user must enter an appropriate number into LUN before compiling this subroutine.

The value of NNP must be given through the IDNN common block.

NNP must be 2 or greater, but smaller than NDP. In the subprogram

package listed below, it is set to 4. The user can change it by declaring

COMMON/IDNN/NNP

•••••••••••••

in his calling program and by assigning a number of his choice to NNP with an arithmetic assignment statement before the call to this subroutine.

The call to this subroutine with MD = 2 must be preceded by another call to this subroutine with the same NDP value and with the same contents of the XD and YD arrays. The call with MD = 3 must be preceded by another call with the same NDP, NXI, and NYI values and with the same contents of the XD, YD, XI, and YI arrays. Between the call with MD = 2 or 3 and its preceding call, the WK array should not be disturbed.

Table B-2 (p. 32) shows the approximate computation times required on the CDC-6600 computer.

Approximate computation times required for the Table B-1. IDBVIP subroutine on the CDC-6600 computer.

		Time (seconds)			
NDP	NIL	MD = 1	MD = 2	MD = 3	
20	10	0.40	0.03	0.02	
	100	0.50	0.12	0.06	
	1000	1.4	1.0	0.35	
30	10	1.3	0.04	0.03	
	100	1.5	0.16	0.07	
	1000	2.7	1.4	0.50	
50	10	6. 6	0.05	0.04	
	100	6. 8	0.24	0.10	
	1000	8. 8	2.2	0.70	

Approximate computation times required for the Table B-2. IDSFFT subroutine on the CDC-6600 computer.

		Time (seconds)			
NDP NXI * NYI		MD = 1	MD = 2	MD = 3	
20	11 * 11	0.50	0.12	0.07	
	33 * 33	1.1	0.70	0.40	
	101 * 101	5.8	5.4	3.4	
30	11 * 11	1.5	-0.16	0.08	
	33 * 33	2.1	0.85	0.41	
	101 * 101	7.3	6.0	3.5	
50	11 * 11	6.8	0.22	0.11	
	33 * 33	7.8	1.2	0.50	
	101 * 101	14.0	7.3	3.7	

32

. data interpretation.

DATE SENSING Watson, Editors 501

d trial application of factor is the northern part of the

1000

udy in the Salton Sea geothermal field.

uctive environment,

rest vity logging tools.

```
SUBROUTINE IDBVIP(MD+NDP+XD+YD+ZD+WK+NIP+X1+Y1+ZI)
                                                                                IB1 001
C THIS SUBROUTINE PERFORMS BIVARIATE INTERPOLATION WHEN THE PRO-
                                                                                181 002
C JECTIONS OF THE DATA POINTS IN THE X-Y PLANE ARE IRREGULARLY
                                                                                181 003
                                                                                181 004
C DISTRIBUTED IN THE PLANE.
                                                                                IRI 005
  THE INPUT PARAMETERS ARE
      MD = MODE OF COMPUTATION (MUST RE 1. 7. OR 3).
                                                                                 181 006
                                                                                 181 007
           " ) FOR NEW XO-YD.
                                                                                 THE
                                                                                    fi()P
           = 2 FOR OLD XD-YD. MEW XI-YI.
                                                                                 181 000
           = 3 FOR OLD XD-YD, OLD XI-YI,
      NDP = NUMBER OF DATA POINTS (MUST RE 4 OR GREATER).
                                                                                181 010
                                                                                181 011
      XD = ARRAY OF DIMENSION NOP STORING THE X COORDINATES
                                                                                 181 012
            OF THE DATA POINTS.
                                                                                IBI 013
          * ARRAY OF DIMENSION NOP STORING THE Y COORDINATES
      YD
             OF THE DATA POINTS.
                                                                                IBI 014
      ZD = ARRAY OF DIMENSION NOP STORING THE 7 COORDINATES
                                                                                 181 015
                                                                                    016
             OF THE DATA POINTS.
                                                                                 161
       WK = ARRAY OF DIMENSION (2*NDP+NNP+51*NDP+NIP
                                                                                 IBI 017
                                                                                 IB1 018
             TO BE USED AS A WORK AREA.
      NIP = NUMBER OF INTERPOLATED POINTS
                                                                                 181 019
          (MUST BE 1 OR GREATER) . = ARRAY OF DIMENSION NIP STORING THE X COORDINATES
                                                                                 IBI 020
                                                                                 181 021
                                                                                 181 022
             OF THE INTERPOLATED POINTS.
       YI = ARRAY OF DIMENSION NIP STORING THE Y COORDINATES
                                                                                 IBI 023
C OF THE INTERPOLATED POINTS.
C WHERE NNP IS THE NUMBER OF ADDITIONAL DATA POINTS USED FOR
                                                                                 181 024
                                                                                 181 025
C ESTIMATING PARTIAL DERIVATIVES AT EACH DATA POINT. THE VALUE
                                                                                 181 026
C OF NNP MUST BE GIVEN THROUGH THE IDNN COMMON. NNP MUST BE 2
                                                                                 181
                                                                                     027
                                                                                 IBI
                                                                                     028
C OR GREATER . BUT SMALLER THAN NOP .
  THE OUTPUT PARAMETER 15
                                                                                 181 029
C ZI = ARRAY OF DIMENSION NIP. WHERE THE Z COORDINATES
C OF THE INTERPOLATED POINTS ARE TO BE DISPLAYED.
C THE LUN CONSTANT IN THE DATA INITIALIZATION STATEMENT IS THE
                                                                                 181
                                                                                     030
                                                                                 181 031
                                                                                 IB1 032
C LOGICAL UNIT NUMBER OF THE STANDARD OUTPUT UNIT AND IS.
                                                                                 IBI 033
   THEREFORE . SYSTEM DEPENDENT .
                                                                                 181 034
C
C DECLARATION STATEMENTS
                                                                                 IRI
                                                                                      035
                                                                                  IBI 036
       DIMENSION XD(10) . YD(10) . ZD(10) . WK (1000) .
                     X1(10) . Y1(10) . Z1(10)
                                                                                 1B1 037
                                                                                  IRI
       COMMON/IDNN/NNP
                                                                                      038
       COMMON/IDGM/NDPC . NNPC . NT . NL
                                                                                 181 039
        COMMON/IDPI/NCF.ICF
                                                                                  IRI
                                                                                      040
       EQUIVALENCE (FNDPO + NDPO ) + (FNDPPV + NDPPV) +
                                                                                 IB1 041
                     (FNNPO + NNPO) + (FNNPPV + NNPPV) +
                                                                                 IRI 042
                     (FNIPO.NIPO) . (FNIPPV, NIPPV) .
                                                                                 IBI 043
                     (FNT.NT) . (FNL.NL)
                                                                                 IBI 044
                                                                                 IBI 045
 C SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES. (ALL MD)
                                                                                 IBI 046
    10 MDO=MD
                                                                                 IRI 047
                                                                                     048
       NDPO=NDP
                                                                                 IRI
       NDPC = NDPO
                                                                                  IBI 049
        NIPO=NIP
                                                                                  IRI
                                                                                      050
        NNPO=NNP
                                                                                 IBI 051
       NNPC = NNPO
                                                                                'IRI 052
 C ERROR CHECK.
                  (ALL MD)
                                                                                 1P1 053
    20 IF (MDO.LT.1.0R.MDO.GT.3)
                                         GO TO 90
                                                                                 181 054
       IF(NDPO-LT-4) GO TO 90
IF(NIPO-LT-1) GO TO 90
                                                                                  181 055
                                                                                  181 056
        IFINNPO.LT.2. OR. NNPO.GE. NDPO! GO TO 90
                                                                                  181 057
                      GO TO 27
        IF (MDO.NF.1)
                                                                                  IBI 058
    21 WK (1) = FNDPO
                                                                                  181 059
        WK (2) = FNNPO
                                                                                  181 060
        GO TO 24
                                                                                  181 061
    22 FNDPPV=WK(1)
                                                                                  IRI 062
        FNNPPV=WK (2)
                                                                                  IBI 063
        IF (NDPO.NF.NDPPV)
                            GO TO 90
                                                                                  181 064
        IF (NNPO.NE.NNPPV)
                             GO TO 90
```

IRT 065

Roger visible

Robert R. Vincent northern part of the

application of

Salton

syste Tuern J B. LaCovie S94 sinhomogeneous distribution of Bharr arysa and K. C. Chan 602 Secured by 2- and 3-dimensional around by equivalent-point method

191

lul

181

IRI

IRI

IPI 1771

101 073

101 075

IPI 075

101

IBI

IRI

IBI

IBI

181

IRI

IRI

IRI

TRI

IBI

THI

181

IBI

IBI 091

IRI

TRI

IRI 094

IRI

IRI

IRI

IBI DOR 000

IRI

IBI

181

IBI

181

181

IBI

IRI

IRI

IBI

IBI

IRI

IBI

IBI

IBI

181 IBI

1H1 072

181 074

070

077

() 78

079

ORO

081

UH2

083

084

985

094

087

OPP

ORO

non

092

003

005

006

007

100

101

102

103

104

105

106

107

108

109

110 181

111

112

113

116

16M 001 1GM 002 IGM 003 IGM 004

16M 005 1GM 006 IGM 007 IGM 008 IGM 009 IGM

IGM 011

010

E fue to arbitrary reply by author conducting cylinder due 3 R

IFIMOD.NF.31

30 NDNDMI=NDDD . (NDDO-1)

IWIP = IWIPT+NDNDM1

IMIPN= IVI PL +NDMDM1

IMDD = IMIDA+NDBU.NNBU

IF (NIPO.NE.NIPPV) On TO 90

23 FNIPPV=Wr (3)

60 10 30

34 WELSTERNIDO

IWIPT=7

WK 151=FNT

WK (6) = FNL

GO TO 50

FNL =WK (A)

60 IF (MDn.ED. 3)

61 CONTINUE

71 CONTINUE

RETURN

SUBROUTINE

C NORMAL EXIT

C ERROR EXIT

AN RETURN

70 NCF=0

JWIT=IWIT-1

JWIT=IWIT-1

DO 71 | IIP=1 . NIPO

JWIT=JWIT+1

DO 61 | IIP=1 . NIPO

I+TIWL=TIWL

42 FNT = WK (5)

GO TO 24

C ALLOCATION OF STORAGE AREAS IN THE WY ARRAY. (ALL MD)

IWIT = IWPD + NDPO * 5

C DIVIDES THE X-Y PLANE INTO A NUMBER OF TRIANGLES AND
C DETERMINES NNP POINTS NEAREST EACH DATA POINT, (MD=1)
40 1F(MD+GT+1) GO TO 42

41 CALL IDGEOMIXD. YD. WK (IWIPI) . WK (IWIPL) . WK (IWIPN))

C ESTIMATES PARTIAL DERIVATIVES AT ALL DATA POINTS. TALL MOI

XI(IIPI.YI(IIPI.WK(JWIT))

CALL IDPTIP(XD, YD, ZD, WK(IWIPT), WK(IWIPL), WK(IWPD).

1 7H MD = . 14 . 10 X . 5 HNDP = . 16 . 10 X . 5 HNIP = . 16 .

IDGFOMIXD.YD.IPT.IPL.IPN)

C LISTING ORDER OF THE LINE SEGMENTS BEING COUNTER-CLOCKWISE.

THIS SUBROUTINE DIVIDES THE X-Y PLANE INTO A NUMBER OF
TRIANGULAR AREAS ACCORDING TO GIVEN DATA POINTS IN THE PLANE.
DETERMINES LINE SEGMENTS THAT FORM THE BORDER OF DATA AREA.
DETERMINES THE TRIANGLE NUMBERS CORRESPONDING TO THE BORDER

DETERMINES THE INTANGLE NUMBERS CORRESPONDING TO THE HONDER
LINE SEGMENTS. AND SELECTS SEVERAL DATA POINTS THAT ARE
NEAREST TO EACH OF THE DATA POINTS.
AT COMPLETION. POINT NUMBERS OF THE VERTEXES OF FACH TRIANGLE
ARE LISTED COUNTER-CLOCKWISE. POINT NUMBERS OF THE FND POINTS
OF EACH BORDER LINE SEGMENT ARE LISTED COUNTER-CLOCKWISE.

WK(JWIT) . XI(IIP) . YI(IIP) . ZI(IIP))

IMPROPER INPUT PARAMETER VALUE(S)./

IDBVIP/)

SO CALL IDPORVIXD. YD. ZD. WKIIWIPNI . WKIIWPDII

GO TC 70

CALL IDECTNIXD. YD. WK (IWIPT) . WK (IWIPL) .

C LOCATES ALL INTERPOLATED POINTS. (MD=1.7)

C INTERPOLATION OF THE 71 VALUES. (ALL MD)

90 WRITE (LUN. 2090) MDO. NDPO. NIPO. NNPO

35H ERROR DETECTED IN ROUTINE

C FORMAT STATEMENT FOR FRROR MESSAGE 2090 FORMAT(1X/41H *** IMPROPER I

10X . 5HNNP = . 16/

interpretation

20

near-infrared zer P. Ashley scent 536

da -

יה אנו

560 set.

34

restivity logging tools

```
C THE INPUT PARAMETERS APE
                                                                                        164 012
         XD.YD . ARRAYS STORING THE X AND Y COORDINATES. PESP. .
                                                                                        10M 013
                  OF DATA POINTS.
                                                                                        16M 014
   THE OUTPUT PARAMETERS ARE
        OUTPUT PARAMETERS ARE

1PT = ARRAY OF DIMENSION 3*NT. WHERE THE POINT NUMBERS

OF THE VERTEXES OF THE (11)TH TRIANGLE ARE TO RE

DISPLAYED AS THE (3*11-2)ND. (3*11-1)ST. AND

(3*11)TH ELEMENIS. IT=1,2....NI.

1PL = ARRAY OF DIMENSION 3*NL. WHERE THE POINT NUMBERS

OF THE END POINTS OF THE (11)TH PORDER LINE

SEGMENT AND ITS RESPECTIVE TRIANGLE NUMBER ARE
                                                                                        164 015
                                                                                        16M 016
                                                                                        ICM 017
                                                                                        16M 018
 C
                                                                                        10M 019
 C
                                                                                       11.M UZ1
        10M 021
                                                                                        164 022
                                                                                        16M 023
                                                                                        16M 024
                                                                                        15M 075
               NUMBERS OF NNP DATA POINTS NEAPEST TO FACH OF
 THE DATA POINTS ARE TO BE DISPLAYED.

C WHERE NOP IS THE TOTAL NUMBER OF DATA POINTS. NNP IS THE
                                                                                        1CM 056
                                                                                        16M 027
 C NUMBER OF DATA POINTS NEAREST TO FACH DATA POINT. NL IS
                                                                                        10M 028
                                                                                        16M 029
   THE NUMBER OF BORDER LINE SEGMENTS. AND NT IS THE NUMBER
                                                                                       16M 030
                    NDP AND NNP ARE GIVEN TO THIS SUBROUTINE
 C OF TRIANGLES.
                                                                                       16M 031
 C THROUGH THE IDGM COMMON. NL AND NT ARE CALCULATED BY
                                                                   THIS
 C SUBROUTINE AND ARE LEFT IN THE IDGM COMMON AT COMPLETION.
                                                                                       16M 032
                                                                                       16M U33
 C DECLARATION STATEMENTS
                                                                                       16M 034
        DIMENSION XD(10), YD(10), 1PT(100), 1PL(100), 1PN(50)
                                                                                       16M 035
        COMMON/IDGM/NDP.NNP.NT.NL
                                                                                       16M 036
        EQUIVALENCE (DSQ1, 1DSQ1) . (DSQ2 . 1DSQ2) . (DSQM, 1DSQM)
                                                                                       16M 037
C PRELIMINARY PROCESSING
                                                                                       16M 03A
    In NDPO=NDP
                                                                                       15M 030
        NDPM1 = NDPn-1
                                                                                       164 040
        NNPO=NNP
                                                                                       16M 041
        NNPM] =NNPO-1
                                                                                       16M 042
C DETERMINES THE NEAREST NAP POINTS.
                                                                                       16M 043
    20 DO 29 IP1=1.NDP0
                                                                                       16M 044
          X1=XD(IP1)
                                                                                       16M 045
          Y1=YD(IP1)
                                                                                       IGM 046
          J1MX=1P1*NNPO
                                                                                       1GM 047
          IMMM-XMIL=MMIL
                                                                                       16M 048
          DO 28 JI=JIMN.JIMX
                                                                                       1GM 049
            J2MX=J1-1
                                                                                       16M 050
            IDMN=0
                                                                                       1GM 051
            DO 27 1P2=1 NDP0
                                                                                       16M 052
               1F(1P2.EQ.1P1) GO TO 27
1F(J1.GT.J1MN) GO TO 27
                                                                                       16M 053
                                                                                       IGM 054
               DSQ1=(XD(1P2)-X1)++2+(YD(1P2)-Y1)++2
    21
                                                                                       IGM 055
               IPT(1P2)=1D5Q1
                                                                                       16M 056
              GO TO 23
                                                                                       1GM 057
    22
               IDSQ1=IPT(IP2)
                                                                                       1GM 058
               IF(IDMN.EQ.0)
    23
                                           GO TO 24
GO TO 27
                                                                                       IGM 059
               IF (DSQ) . GE . DSOMN)
                                                                                       16M 060
               IFIJIMN.GT.JZMX1
                                           GO TO 26
                                                                                       16M 061
              DO 25 J7=J1MN,J7MX
                                                                                      1GM 067
                IF(IPZ.ED.IPN(JZ))
                                        GO TO 27
                                                                                     16M 063
              CONTINUE
                                                                                       16M 064
              DSOMN=DSQ1
                                                                                      1GM 065
              IDMN= IP2
                                                                                      16M 066
   27
            CONTINUE
            IPNIJ1)=IDMN
                                                                                      16M 067
                                                                                      IGM OAR
         CONTINUE
                                                                                      164 069
    29 CONTINUE
C LISTS ALL THE POSSIBLE LINE SEGMENTS IN THE IPL ARRAY.
                                                                                      16M 070
C CALCULATES THE SQUARES OF THE LINE SEGMENT LENGTHS. AND STORE
                                                                                      IGM 071
                                                                                      16M 072
C THEM IN THE IPT ARRAY.
                                                                                      16M 073
   30 IL=0
      DO 32 1P1=1 . NDPM1
                                                                                      16M 074
                                                                                      16M 075
         x1=xD([b])
                                                                                      16M 076
```

```
Y1=YD(101)
                                                                                     16.00 1:77
         16161=161+1
                                                                                     164 n7p
          DO 31 1P2=1P1P1 . NDPO
                                                                                     16M 079
            11 = 11 +1
                                                                                     IGM ORD
            117=11+11
                                                                                     IGM ORT
            1PL (11 72-1)=1P1
                                                                                     TOM OR?
            IPL(ILT2) = IP2
DSO1=(XD(IP2)-X1)**?+(YD(IP2)-Y1)**?
                                                                                     164 11 B3
                                                                                     16M 084
            1P1(11)=10501
                                                                                     104 005
         CONTINUE
    31
                                                                                     ICH MAL
    32 CONTINUE
                                                                                     IGM
                                                                                        007
C SORTS THE IPL AND IPT ARRAYS IN ASCENDING ORDER OF THE LINE
                                                                                     IGM DAP
                                                                                     IGM
                                                                                         UPO
  SEGMENT LENGTH (DISTANCE).
                                                                                     154
                                                                                        000
      NLM1=NL n-1
                                                                                     16M 091
       DO 37 || |= | + NLM|
| IDSO|= |PT(|L|)
                                                                                     16M 092
                                                                                     16M 003
         ILM=ILI
                                                                                     16M 094
         DSOM=DSO1
                                                                                     16M 095
         IL 2MN= IL 1+1
                                                                                     IGM DOG
         DO 36 ILZ=ILZMN+NLO
IDSOZ=IPT(ILZ)
                                                                                     16M 097
                                                                                    IGM OOR
            IF (DSO? + GE . DSOM)
                                    Gn Tn 36
                                                                                    IGM
                                                                                         000
            11 M= 11 2
                                                                                     IGM
                                                                                        100
           DSOM=DSQ2
                                                                                     IGM
                                                                                         101
         CONTINUE
   36
                                                                                    IGM
                                                                                        102
         IPTIILM1= IDSO1
                                                                                    IGM
                                                                                        103
         IPTIIL11=1DSOM
                                                                                    164
                                                                                        104
         11172=111+111
                                                                                    IGM
                                                                                        105
         ILMT 7= ILM+ ILM
                                                                                    16M 106
         ITS=IPL(IL1T2-11
         IPL(IL1T2-1)=IPL(ILMT2-1)
IPL(ILMT2-1)=ITS
                                                                                    IGM
                                                                                        107
                                                                                    16M 108
                                                                                    ICM
                                                                                        109
         ITS = IPL (ILITZ)
                                                                                    1GM 110
         IPL(IL1T2) = IPL(ILMT2)
                                                                                    IGM 111
         IPL(ILMT2)=1TS
                                                                                    IGM 112
   37 CONTINUE
                                                                                    IGM
                                                                                        112
C ELIMINATES LINE SEGMENTS THAT CROSS OR LIE OVER SHORTER ONE.
                                                                                    1GM 114
   40 IL0=1
                                                                                    16M 115
              111=2 . NLO
                                                                                    16M 116
         1L112=1L1+1L1
                                                                                    IGM
                                                                                        117
         IP1= IPL (IL172-1)
                                                                                    IGM 118
         1P2=1PL(1L1T2)
                                                                                    IGM
                                                                                        119
         X1 = XD( [P1 )
                                                                                    IGM 120
         X2=XD(1P2)
                                                                                    IGM
                                                                                        121
         Y1=YD([P])
                                                                                    IGM 122
         Y2=YD(102)
                                                                                    IGM
                                                                                        123
         DX21=X2-X1
                                                                                    IGM
                                                                                        124
         DY21=Y2-Y1
                                                                                    IGM
         DO 45 112=1.110
                                                                                    IGM
                                                                                        126
           1L212=1L2+1L2
                                                                                    IGM
           IP3 = IPL (IL212-1)
                                                                                    IGM
                                                                                        128
           1P4=1PL(1L272)
                                                                                    IGM
                                                                                        129
           X3=XD(1P3)
                                                                                    IGM
                                                                                        130
           X4=XD(1P4)
                                                                                    IGM
                                                                                        131
           Y3=YD(1P3)
                                                                                    IGM
           Y4=YD(1P4)
                                                                                    IGM 133
           DX43=X4-X3
                                                                                    IGM
                                                                                        134
           DX42=X4-X2
                                                                                    IGM 135
           Dx41=x4-x1
                                                                                    16M 136
           DX32=X3-X2
                                                                                    IGM 137
           DX31=X3-X1
                                                                                    IGM
                                                                                        138
           DY43=Y4-Y3
                                                                                    IGM
                                                                                        139
           DY42 = Y4 - Y2
                                                                                    IGM
                                                                                        140
           DY41=Y4-Y1
                                                                                    IGM 141
```

36

and trial application of factor

560

northern part of the Rober, V. Vincent

ats.

342

50

I near infrared, Grohom R.

Grield, Elsa 4 Abban,

data interpretation

TE SENSING

522

rocks in visible and near-infrared H. G. 12, and Roger P. Ashley

Sea geothermal field

602 caused by 2- and 3-dimensional stem, Lucien J B LaCovie inhomogeneous distribution of hatti, Hariya and K. C. Chan

restivity logging

uctive environment.

3 conducting evlinder excited by a R. Quersh with reply by authors 9

```
DY32= Y3-Y2
                                                                                   16" 142
            DY31=Y3-Y1
                                                                                   16M 143
            IF(1P3.NE.1P1) GO TO 41
                                                                                   16" 144
            1F(DY41*DX21-DX41*DY21.NE.0.0) GO TO 45
            JF(DX41*DX71+DY41*DY21) 45.45.46

IF(IP4.NF.IP1) GO TO 42

IF(DY31*DX21-DX31*DY21.NE:0.0) GO TO 45
                                                                                   10.4
                                                                                        145
                                                                                   16" 146
    41
                                                                                   10.4
                                                                                        14.7
                                                                                   16M 148
            1E(DX31+DX31+DY31+DY31)
                                         45,45,46
                                                                                   IGM
                                                                                        140
            IF (1P3.NE.1P2) GO TO 43
                                                                                   IGM 150
            IF (DY42*DX21-DX42*DY21.NE.0.0) GO TO 45
                                                                                   164
                                                                                       151
            IF(DX42*DX21+DY42*DY21)
                                               41 .45 .45
                                                                                   16M 152
            IF ( 1P4 . NE . 1P2 ) GO TO 44
    43
                                                                                   IGM
                                                                                       153
            1F(DY32*DX21-DX32*DY21.NE.0.0) GO TO 45
                                                                                   IGM
                                                                                       154
            IF (DX32*DX21+DY32*DY21)
                                               46 + 45 + 45
                                                                                   164
                                                                                       155
            1F((DY31*DX21-DX31*DY21)*(DY41*DX21-DX41*DY21).GF.D.O)
    44
                                                                                   IGM
                                                                                       156
     1
                                               GO TO 45
                                                                                   16.
                                                                                       157
            IF((DY31*DX43-DX31*DY43)*(DY37*DX43-DX37*DY43).LT.0.0)
                                                                                   IGM
                                                                                       158
                                               GO TO 46
                                                                                   16.0
                                                                                       159
   45
                                                                                   IGM
                                                                                       160
         ILO=ILO+1
                                                                                   IGN
                                                                                       161
         ILOT2=ILO+ILO
                                                                                   16M 162
         IPL ( | LOT2 - 1 ) = IP1
                                                                                   IGM
                                                                                       163
         1PL ( 1LOT 2 ) = 1P2
                                                                                   16M 164
   46 CONTINUE
                                                                                   IGM
                                                                                       165
       NLO=1LO
                                                                                   16M 166
C RE-SORTS THE IPL ARRAY IN ASCENDING ORDER OF ITS ELEMENTS.
                                                                                   IGM 167
   SO NLTZ=NLO+NLO
                                                                                   16M 168
       NLM1 T2=N1 T2-2
                                                                                   IGM
                                                                                       169
       DO 54 1L112=2.NLM112.7
                                                                                   IGM 170
         ILMT2=11172
                                                                                   16M 171
         1PM1=1P( (1( MT2-1)
                                                                                   164 172
         1P47=1PL (1LMT2)
                                                                                   164 1724
         IL2T2M=IL1T2+7
                                                                                   16M 174
         DO 53 IL2T2=1L2T2M+NLT2+2
                                                                                   1GM 175
           IP21=IPL(1L217-11
                                                                                   IGM 176
           1P22=1PL(1L212)
                                                                                   IGM
                                                                                       177
           IF ( IPM 1- IP21 )
                                                                                   IGM
                                                                                       178
   51
           IF (1PM2-1P22)
                             53.53.52
                                                                                   IGM 179
           ILMT7=IL2T2
   52
                                                                                   1GM
                                                                                       180
           1PM1=1P21
                                                                                   IGM
                                                                                       181
           1PM2=1P22
                                                                                   164 182
   53
         CONTINUE
                                                                                   IGM
                                                                                       183
         IPL ( | | MT2-1 ) = | PL ( | | | | | | | | | |
                                                                                   16M 184
         IPL(ILMT2) = IPL(IL1T2)
IPL(IL1T2-1)=IPM1
                                                                                   IGM
                                                                                       185
                                                                                   16M 186
         IPLIILITZ) = IPM2
                                                                                   IGM
                                                                                       187
   54 CONTINUE
                                                                                  IGM
                                                                                       188
C DETERMINES TRIANGLES.
                                                                                  1GM
                                                                                       189
   60 IT=0
                                                                                       190
                                                                                  IGM
      NLM1=NLN-1
                                                                                  IGM
                                                                                       191
       NLM2=NLn-7
                                                                                       192
                                                                                  IGM
       DO 67
              IL1=1 . NLM2
                                                                                  IGM
                                                                                       193
         1117=11.1+111
                                                                                       194
                                                                                  IGM
         1P1=1PL(1L172-1)
                                                                                  IGM
                                                                                      195
         1P2=1PL(1L112)
                                                                                  LGM
                                                                                      196
         IL1P1=IL1+1
                                                                                  IGM
                                                                                       197
         DO 66 ILZ=IL1P1."LM1
                                                                                  16M 198
           11272=112+112
                                                                                  IGM
                                                                                      199
           IF ( IPL ( IL 272-1) . NE . IP1) GO TO 67
                                                                                  16M 200
           IP3= [PL (11272)
                                                                                  IGM 201
           1L2P1=1L2+1
                                                                                  16M 202
           DO 62 IL3=1L2P1+NL0
IL3T2=1L3+1L3
                                                                                  IGM 203
                                                                                  IGM 204
                                      62.61.66
             1F(1PL(1L3T2-1)-1P2)
                                                                                  1GM 205
   61
             1F(1PL(1L3T2) -103)
```

62.63.66

16M 206

```
OTE SENSING
             Watson, Editors
```

10 W. Offield, Elsa A. Abbott, data interpretation II Z

CONTINUE

1PT1=1P1

1PT2=1P2

1PT3=1P3

1TS=1PT2

1PT3=1TS

1017=1013

X1=XD([PT])

X2=XD(IPT2)

X3=X0(1913)

Y1=YD(IPT1)

Y2=Y0(1PT2)

Y3= YD (1PT 3)

Dx32=x3-x2 Dx21=x2-x1

DX13=X1-X3

DY32=Y3-Y2

Xn= XD(IPO)

AU=AD(16U)

IPT(1113-2)=1PT1

IPT(1773-1)=1PT?

IPT(1173) =1P13

CONTINUE

17 = 1T+1

CONT INUF

67 CONTINUE

NTOFIT

1113=11+3

1E((AD(1613)-AD(1611))*(XD(1615)-XD(1611))-

DY32=Y3-17 DY21=Y2-Y1 DY13=Y1-Y3 DO 65 IPO=1*NDPO IF(IPO*EQ*IPI]*OR*IPO*FO*IPI2*OP*IPO*FO*IPI3)

IF((Y0-Y1)*DX21-(XU-X1)*DY21.LT.U.0)

IF((Y0-Y2)*DX32-(X0-X2)*DY32.LT.0.0)

IF((Y0-Y3)*DX13-(X0-X3)*DY13.GF.0.0)

(XD(1P13)-XD(1P11)) • (YD(1P17)-YD(1P11)) • G(• 0 • 0)

62

63

1

65

66

71

72

73

50 Hunt infrared, Graham R. near

522 drawn in visible and near-infrared Johnson I data, Robert K. Vincent R En Ind and G.

of factor in the northern part of the application

art and trial

560

Salton Sea geothermal field

LaCoste B.

602 o inhomogeneous distribution of naryya and K. C. Chan siste n. Lucien J. Bhc

es aused by 2- and 3-dimensional iration by equivalent-point method

f restivity logging

ductive environment

IGM

15.4 200

164 210

IGM

IGM 212

IGM

IGM 214

1GM

164

164

164

164

IGM

IGM

IGM 222

164

IGM

ICH 225

1GM

IGM

164 228

164

IGM 230

IGM

IGM 232

IGM 233

IGM 234

IGM 235

IGM 237

IGM 238

IGM 240

164 241

164 242

IGM 243

IGM 245

IGM 246

IGM 239

GO TO 65

GO TO 65

GO TO 65

GO TO 66

211

213

215

216

719

219

220

221

773

774

226

227

229

231

236 IGM

244 1GM

conducting extinder excited by 661

9 gnetic anomalies due to arbitrary

999

Ward

199

ert E. Sheriff ration, S. H.

NT=NTO 1GM 247 C SELECTS AND SORTS LINE SEGMENTS THAT FORM THE BORDER. IGM 248 70 IL0=0 IGM 249 DO 75 111=1 .NLO IGM 250 11172=111+111 IGM 251 IP1= IPL (| L 1 1 7 - 1) IGM 252 1P2 = 1PL (1L112) IGM 253 X1=XD([P]) Y1=YD([P]) IGM 254 IGM 255 X2=XD(1P2) IGM 256 Y2=YD(1P2) IGM 257 DX21=X2-X1 DY21=Y2-Y1 IGM 258 IGM 259 DO 71 1PO=1 . NDPO IGM 260 IF(IPO.EO.IP1.OR.IPO.FO.IP2) G TO 5=(YD(IPO)-Y1)*DX21-(XD(IPO)-X1)*LY21 10 71 IGM 261 IGM 262 IF(S.NE.0.0) GO TO 72 IGM 263 CONTINUE IGM 264 IPOMN= IPO+1 1GM 265 DO 73 IPO=IPOMN NDPO IGM 266 IF (IPA.EQ. 1P1. OR. 1P0.EQ. 1P?) GO TO 73 IGM 267 1F(((YD(1P01-Y1)*DX21-(XD(1P01-X1)*DY21)*5.LT.0.0) IGM 268 GO TO 75 IGM 269 CONTINUE 38

```
1L012=11 0+1L0
                                                                                              160 271
             IFIS.LT.n.n) GO TO 74
                                                                                              10." 277
             1P( (1(012-1)=1P)
                                                                                              16.M 273
             IPL (11.012) =1P2
                                                                                              164 274
             GO TO 75
                                                                                              16M 275
             IPL (1L012-1)=1P2
                                                                                              164 276
             IPL(ILOTZ) = IP1
                                                                                              16M 277
       75 CONTINUE
                                                                                             1GM 278
          NLO=1LO
                                                                                             16" 279
          NLM1=NLO-1
                                                                                             1GM 280
          DO 79 IL1=2.NLM1
IL172=IL1+IL1
                                                                                             16M 281
                                                                                             IGN 282
             1P2=1PL(1L112-2)
                                                                                             16º 283
            IF(IPL(IL1T2-11.E0.IP2)
                                                                                             IGM
                                                                                                 284
                                               GO TO 79
            IL101=1L1+1
                                                                                             IGM 285
            DO 77 IL2=IL1P1 .NLO
                                                                                             16M 286
               11 272=112+112
                                                                                             IGM 287
               IF(IPL(IL2T2-1).EQ. IP2)
                                                                                             1GM 288
                                               GO TO 78
            CONTINUE
                                                                                             1GM 289
      78
            121=1PL(1L1T2-1)
                                                                                             IGM
                                                                                                 290
            IP?=IPL(IL1T2)
                                                                                             16M 291
            IPL(IL1T2-1)=IPL(IL2T2-1)
                                                                                             164
                                                                                                 292
            IPL(IL1T2)
                                                                                             1GM 203
                          =1PL(1L2T2)
            IPI (11272-11=1P1
                                                                                             164
                                                                                                 204
            IPL(IL2T2)
                                                                                             IGM 295
                          = 1P2
      79 CONTINUE
                                                                                            IGM
                                                                                                 296
         NL=NLO
                                                                                            IGM
                                                                                                 207
 C FINDS OUT TRIANGLES CORRESPONDING TO THE BORDER LINE
                                                                                            IGM
                                                                                                 298
 C SEGMENTS.
                                                                                            IGM 299
     80 NLP1=NLO+1
                                                                                            IGM
                                                                                                 300
         00 83 ILR=1.NLO
                                                                                            IGM
                                                                                                 301
           IL=NLP1-ILR
                                                                                            104
                                                                                                 300
            ILT2=IL+IL
                                                                                            15M 303
           1LT3=1LT2+1L
                                                                                            IGM
                                                                                                 304
           1PL1=1PL(1LT2-1)
                                                                                            16M 305
           IPL2=IPL(ILT2)
DO 81 IT=1.NTO
                                                                                            IGM 306
                                                                                            IGM 307
              1773=17#3
                                                                                            IGM 308
              IPT1=IPT(ITT3-2)
                                                                                            IGM 309
              1PT2=1PT(1TT3-1)
                                                                                            IGM
                                                                                                310
              1PT3=1PT(1TT3)
                                                                                           1CM 311
             IF ( IPL1 - NE - IPT1 - AND - IPL1 - NE - IPT2 - AND - IPL1 - NE - IPT3 )
                                                                                           IGM 317
       1
                                                                                           IGM 313
                                                                 GO TO 81
             IF(IPL2.EQ.IPT1.OR.IPL2.EQ.IPT2.OR.IPL2.EQ.IPT3)
                                                                                           IGM 314
       1
                                                                                           IGM 315
                                                                 GO TO B2
    81
           CONTINUE
                                                                                           IGM 316
    82
           IPLIILT3-21=IPL1
                                                                                           IGM 317
           1PL (11173-11=1PL2
                                                                                           IGM 318
          IPL (11 T3) =1T
                                                                                           IGM 319
    83 CONTINUE
                                                                                           1GM 320
        RETURN
                                                                                           1GM. 321
                                                                                           IGM 322
IGM 323
        END
SUBROUTINE IDLCTN(XD,YD,IPT,IPL,XII,YII) ITI)

C THIS SUBROUTINE LOCATES A POINT, I.F., DETERMINES WHAT

C TRIANGLE A GIVEN POINT (XII,YII) BELONGS TO. WHEN THE GIVEN

C POINT DOES NOT LIE INSIDE THE DATA AREA, THIS SUBROUTINE

C DETERMINES THE BORDER LINE SEGMENT IN THE AREA ABOVE WHICH THE
                                                                                           ILC 001
                                                                                          ILC 002
                                                                                          ILC 003
                                                                                          ILC 004
C POINT LIES , OR TWO BORDER LINE SEGMENTS BETWEEN TWO AREAS
                                                                                          ILC 005
  AROVE WHICH THE POINT LIES.
                                                                                          1LC 006
THE INPUT PARAMETERS ARE
                                                                                          ILC DOS
```

110=110+1

XD.YD = ARRAYS STORING THE X AND Y COORDINATES. WESP...

40

10

application

D .. 8 178 3

35

the s

-

increase 542

data.

l'incent

503

E.

Graham

infrared.

Elsa A Abbatt,

Brazil: hern Brazil:

data interpretation

OTE SENSING

522

near-infrared

in visible a Goetz, and F. Robert K. 1

Johnson

×

Patting ductive environment 199

f restivity logging tools

system Lucien J B. LuCoste 594
5 inhorrogeneous distribution of
Bharr. haryya and K. C. Chun 602
es saused by 2- and 3-dimensional
ization by equivalent-point method

602

geothermal

Sea

Salton

11.0

authors alies due to arbitrary with reply by author nite, conducting extinder agnetic anomalies

```
C CHECK IF BETWEEN THE SAME TWO ROPDER LINE SECMENTS
     30 IF(C50221)
                        50.31.31
                                                                                     110 1174
     31 11213=112.3
                                                                                     111 1175
         1P3=1PL(1L2T3-1)
                                                                                     110 07%
         X3=XD(1D3)
                                                                                     11 0 077
         Y3=YDT ID3)
                                                                                     111 /170
        DX32=X3-X2
                                                                                     11 0 070
        DY32=Y3-Y7
                                                                                     ILC DAD
        IF(Dxn2+Dx32+DYn2+DY32) 80+80+50
                                                                                     ILC ORT
 C WHEN CALLED WITH A MEW SET OF NT AND NE
                                                                                     ILC DRZ
     35 NTPV=NTO
                                                                                    11 C ()A2
        NL PV=NI A
                                                                                     110
                                                                                        CAL
        ITIPV=n
                                                                                    ILC DAS
 C LOCATION INSIDE THE DATA AREA
                                                                                    11 C DAG
     50 1:1013=0
                                                                                    ILC CAT
       DO 69 ITO=1.NTO
ITOT3=ITOT3+3
                                                                                    ILC ORP
                                                                                    ILC ()89
          IFITTO-ED-ITIPV) GO TO 69
                                                                                    110
                                                                                        000
          IP1=IPT(11013-2)
                                                                                    110
                                                                                        001
          IP2=10T(11013-1)
                                                                                    110 002
          1P3 = 1PT(1T0T3)
                                                                                    ILC 003
          X1=XD(101)
                                                                                    11 C 004
          X5=XD(1b5)
          X3=XD(1P3)
                                                                                    ILC non
          IF(X0-X1)
                                                                                    ILC DOT
                        53,55,51
    51
          1F(X0-X2)
                        55,55,52
    52
          1F(X0-X3)
                        55.55.69
                                                                                    ILC 099
    53
          1F(X0-X2)
                        54,55,55
                                                                                    ILC
                                                                                        100
         IF(X0-X3)
                        69,55,55
                                                                                    ILC
                                                                                        101
         Y]=YD([P])
                                                                                    ILC 102
         Y2=YD(1P2)
                                                                                   ILC 103
         Y3=YD(1p2)
         IF(YO-Y1)
                        58.60.56
                                                                                   11. 105
         IF ( YO - Y2 )
   56
                       60.60.57
                                                                                   ILC
                                                                                       106
   57
         IF (Y0-Y3)
                        60.60.60
                                                                                   ILC 107
   58
         IFIYO-Y21
                        59,60,60
                                                                                   ILC 10A
         IFIYO-Y31
                      69,60,60
                                                                                   ILC 109
        IF((Yn-Y1)*(x2-x1)-(x0-x1)*(Y2-Y1)) 69.61.61

IF((Yn-Y2)*(x3-x2)-(x0-x2)*(Y3-Y2)) 69.62.62

IF((Yn-Y3)*(x1-x3)-(x0-x3)*(Y1-Y3)) 69.80.80
   60
                                                                                   ILC
                                                                                       110
                                                                                   ILC 111
   61
   62
   69 CONTINUE
                                                                                   ILC 113
C LOCATION OUTSIDE THE DATA AREA
                                                                                   11 ( 114
   70 NLOT3=NLO#3
                                                                                   ILC 115
      IP1=IPL(NLOT3-2)
                                                                                   110 116
      IPZ=IPL(NLOT3-1)
                                                                                  ILC 117
ILC 118
ILC 119
      X1=XD(1P1)
      Y1=YD(IP)
      X2=XD(1P2)
                                                                                  ILC 120
      Y2=YD1 1P21
                                                                                  ILC 121
      DX02=X0-X2
                                                                                  ILC 122
      DY02=Y0-Y2
                                                                                 "ILC- 123
      DX21=X2-X1
                                                                                  ILT 174
      DY21=Y2-Y1
                                                                                  ILC 125
      CS0221=Dx02*Dx21+DY02*DY21
      DO 74 IL N=1 . NL N
                                                                                  ILC 127
                                                                                  ILC
                                                                                      129
        Y1=Y2
                                                                                  ILC 129
        DXO1 = DXO2
                                                                                  ILC
                                                                                      130
        DY01=DY02
                                                                                  ILC
                                                                                      131
        IP2 = IPL (3 * ILO-1)
                                                                                  ILC 132
        X2=XD(1P2)
                                                                                  ILC 133
        Y2=YD(1P2)
                                                                                  ILC 134
        DX02=X0-X2
                                                                                  ILC 135
       DY02=Y0-Y2
                                                                                  ILC 136
                                                                                 ILC 137
```

DX21=x2-x1		ILC	
DY21=Y2-Y1		11 0	
CSPV=CS0221		ILC	140
CS0221=DX02*DX21+DY02*DY21		ILC	141
IF(C50221) 71.71.74		ILC	147
그리다 그 그리고 그리고 그리고 그리고 그리고 그리고 그리고 그리고 그리고 그	3.72.72	ILC	143
	6,76,74	ILC	144
73 IFICSPV) 74.74.75		ILC	145
74 CONTINUE		ILC	146
1L0=1		ILC.	147
75 ITO=ILO-1		ILC	148
IF(IIn.En.n) ITO=NLO		ILC	149
GO TO 77		ILC	150
76 110=1L0		ILC	151
77 110=110*NTL+1L0		ILC	
C NORMAL EXIT		ILC	163
80 III=IIO		ILC	
ITIPV=IIO		ILC	155
RETURN		ILC	
END		ILC	157
SUBROUTINE IDPORVIXD. YD. ZD. 1PM		IPD.	
C THIS SUBROUTINE ESTIMATES PARTIAL D	FRIVATIVES OF THE FIRST AND	IPD	
C SECOND ORDER AT THE DATA POINTS.		IPD	F00
C THE INPUT PARAMETERS ARE		IPD	004
C XD.YD.ZD = ARRAYS STORING THE X	. Y. AND Z COORDINATES.	IPD	005
C RESP. OF DATA POINT	5.	IPD	006
C IPN = ARRAY STORING THE POINT N	LIMBERS OF NNP DATA	IPD	007
C POINTS NEAREST TO FACH OF		IPD	OOR
C WHERE NNP IS THE NUMBER OF DATA POI		IPD	
C OF PARTIAL DERIVATIVES AT FACH DATA		IPD	
C THROUGH THE IDGM COMMON.	Contract Con	IPD	\$10 P. C. C. C.
C THE OUTPUT PARAMETER IS		IPD	
C PD = ARRAY OF DIMENSION 5*NDP.	WHERE THE ESTIMATED	IPD	
C ZX. ZY. ZXX. ZXY. AND ZYY		IPD	33/0/70
C POINTS ARE TO BE DISPLAYE		IPD	
C WHERE NOP IS THE TOTAL NUMBER OF DA		IPD	100
C THROUGH THE IDGM COMMON.		IPD	0.00
C DECLARATION STATEMENTS		IPD	0.00
DIMENSION XD(10) . YD(10) . ZD(10	1. IPN(100) .PD(50)	IPD	
COMMON/IDGM/NDP NNP NT NL		IPD	
REAL NMX . NMY . NMZ . NMXX . NM	XY.HMYX.NMYY	IPD	
C PRELIMINARY PROCESSING		IPD	S. T. Strand Co.
10 NDPO=NDP			
NNPO=NNP		IPD	-
NNPM1=NNPO-1	refer	IPD	S12 S12 F -
C ESTIMATION OF ZX AND ZY		IPD	
20 JPD0=-5		IPD	
JIPNO=-NNPO		1.7	028
DO 24 IPO=1 NDPO		IPD	0.00
JPDn=JPDn+5		IPD	
X0=XD(1PO)		IPD	
Y0=YD(1P0)		IPD	
Z0=ZD(1P0)		IPD	
NMX=0.0		IPD	
NMY=0.0	*	IPD	
NMZ=0.0		IPD	
JIPNO=JIPNO+NNPO		IPD	
DO 23 IN1=1 • NNPM1		IPD	
JIPN-JIPNO+IN]		IPD	
IPI=IPN(JIPN)		IPD	
DX1=XD(IP1)-XO		IPD	

42

e art and trial application of factor

095 L. .. D

study in the Salton Sea geothermal field.

oinh geneous distribution of Bhar arys and K. C. Chan 602 as coursed by 2- and 3-dimensional izasion by equivalent-point method

ir infrared, Graham R Hunt 50;

thern Brazil: Tectonic control of W. Offield, Elsa A. Abbott,

ig data interpretation.

OTE SENSING

d and G. R. Johnson 514

3 .ks in visible and near-infrared

I data, Robert K. Vincent 536 is the northern part of the

ductive environment.

f restivity logging tools.

agnetic anomalies due to arbitrary 1 R. Quershi with reply by authors 663 inite, conducting cylinder excited by a very 661

Per E. Sheriff 667

```
DY1=YD(1P1)-YO
            DZ1=ZD(1P1)-ZO
                                                                                 IPH 042
            1 + 1 N 1 = NMS N 1
                                                                                 IPD 043
           ODUN . UNS . INS . UND . S OU
                                                                                 100 044
                                                                                 1PD 045
              IPI=IPN(JIPN)
                                                                                 100 046
              DX2=XD(IPI)-XO
                                                                                 1PD 047
              DY2=YD(IPI)-YO
                                                                                 IPD OUP
              DZ7=ZD(IPI)-Zn
                                                                                 1PD 049
              DNMX = DY1 + DZ2 - DZ1 + DY2
                                                                                 1PD 050
             DNMY*DZ1*DX2-DX1*DZZ
                                                                                 IPD 051
             DMMZ = DX1 + DY2 - DY1 + DX2
                                                                                 1PD 052
              IFIDNMZ .GE . D. A)
                                                                                 1PD 063
                                  GO TO 21
             DHWX = - DNWX
                                                                                 100 054
             DNUY =- DNWY
                                                                                 100 044
             DNMZ = - DNMZ
                                                                                 IPD DER
   21
             NMX=NMX+DNWX
                                                                                 IPD DET
             NMY=NMY+DNMY
                                                                                 IPD OSB
             NMZ = NMZ + DNMZ
                                                                                 IPD 059
   22
           CONTINUE
                                                                                 1PD 060
         CONTINUE
   23
                                                                                 1PD 061
         PD(JPDO+1)=-NMX/NMZ
                                                                                 IPD 067
        PD(JPD0+2) =- NMY/NMZ
                                                                                1PD 063
   24 CONTINUE
                                                                                1PD 064
C ESTIMATION OF ZXX, ZXY, AND ZYY
                                                                                1PD 065
   30 JPD0=-5
                                                                                1PD 066
      JIPMO=-NNPO
DO 34 IPO=1+NDPO
                                                                                IPD 067
                                                                                IPO DAR
        JPD0=JPD0+5
                                                                                1PD 069
        XO=XD(IPO)
                                                                                IPD 070
        YO=YD(IPO)
                                                                                IPD 071
        ZXO=PD(JPD0+1)
                                                                                IPD 072
        ZYO=PD(JPD0+2)
                                                                                1PD 073
        NMXX=n.n
                                                                                IPD 074
        NMXY=n.n
                                                                                IPD 075
        NMYX=n.n
                                                                                IPD 076
        MMYY=n.n
                                                                                IPD 077
        NMZ =0.0
                                                                               1PD 078
        OGNN+UNGIC = UNGIL
                                                                               IPD 079
        DO 33 IN1=1.NNPM1
                                                                               1P0 080
          JIPN=JIPNO+IN1
                                                                               IPD 081
          IPI=IPN(JIPN)
                                                                               IPD OR?
         DX1=XD(IPI)-XO
                                                                               IPD ORT
         DY1=YD(IPI)-YO
                                                                               IPD 084
          JPD=5*(1P1-1)
                                                                               IPD 085
         DZX1=PD(JPD+1)-ZXO
                                                                               IPD OR6
         DZY1=PD(JPD+21-ZYO
                                                                               IPD 087
         IN2MN=IN1+1
                                                                               IPD 088
         DO 32 IN2=IN2MN . NNPO
                                                                               IPD 089
           JIPN=JIPNO+IN2
                                                                               100 000
           IPI=IPN(JIPN)
                                                                               100 001
           DX2=XD(101)-X0
                                                                               100 005
           DY2=YD(1PI1-YO
                                                                               IPD 093
           JPD=5*(IPI-1)
                                                                               IPD 094
           DZX7=PD(JPD+1)-ZXO
                                                                               IPD nos
           DZY2=PD(JPD+21-ZYO
                                                                               1PD 096
           DNMXX=DY1+DZX7-DZX1+DY2
                                                                              IPD 097
           DNMXY=DZX1*DX2-DX1*DZX2
                                                                              IPD 098
           DNMYX=DY1+DZY2-DZY1+DY2
                                                                              IPD 099
           DNMYY = DZY1 + DX2 - DX1 + DZY2
                                                                              IPD 100
           DNMZ =DX1+DY2 -DY1+DX2
                                                                              IPD
                                                                                  101
           IF (DNMZ . GF . D . D)
                                                                              IPD 102
                               GO TO 31
           DMMXX =- DMMXX
                                                                              IPD 103
           DN4XY =- DNMXY
                                                                              IPD 104
```

IPD 105

10 ITO= ITI

X10=X11

Y10=Y11

NTL = NT + NL

offield, Elsa A. Abbott, data interpretation, thern W

50

DNMYX = - DNMYX

DNWYY = - DNWYY DNMZ =-DNMZ

NMXX=NMXX+DNMXX

NMXY=NMXY+DNMXY

NMYX=NMYX+DNMYX

NMYY=NMYY+DNMYY

NWZ = NWZ +DNWZ

PDIJPDO+31=-NMXX/NM7

CONTINUE

CONTINUE

32

33

50 H Johnson infrared, Graham Par.

522 near-infrared and and G. R. Johnson trocks in visible and near-

factor application of the Robert K. Vincent 10 northern part of data. the

560

Sea Salton the =

system, Lucien J. B. LaCoste

K. C. Chan
d 3-dimensional by 2- and 3-dime Thorrocharysa and s caused b

logging I restivity

active environment.

IPI

IPI

IPI

041

042

043

1P1 044

IPI 045

int

Inn

IPD 112

100

100 10 ·

100 110

IPD 111

IPD 112

IPD 114

1PD 115

116

conducting extinder exerted by 3

authors by authors Quershi with R. C

30

H are!

ration, S. H. I

44

PD(JPD0+4)=-(NMXY+NMYX)/(7.0*NM7) IPD 117 PDIJPDO+51 =-NMYY/NMZ IPD 110 34 CONTINUE IPD 119 RETURN IPD 120 END IPD 121 SUBROUTINE IDPTIP(XD,YD,ZD,IPT,IPL,PDD,111,X11,Y11,Z11)
THIS SUBROUTINE PERFORMS PUNCTUAL INTERPOLATION OR FXIRAPO-LATION, 1.F., DETERMINES THE Z VALUE AT A POINT. IP1 001 1PI IPI 003 THE INPUT PARAMETERS ARE IPI XD. YD. ZD = ARRAYS STORING THE X. Y. AND Z COORDINATES. 004 RESP. OF DATA POINTS.

IPT = ARRAY STORING THE POINT NUMBERS OF THE VERTEXES IPI 000 IPI 006 C OF THE TRIANGLES.

IPL = ARRAY STORING THE POINT NUMBERS OF THE END IPI C IPI POINTS OF THE BORDER LINE SEGMENTS AND THEIR RESPECTIVE TRIANGLE NUMBERS. IPI 000 0 191 010 PDD = ARRAY STORING THE PARTIAL DERIVATIVES AT THE 011 IPI IPI 013 C DATA POINTS. 101 017 TRIANGLE NUMBER OF THE TRIANGLE IN WHICH C IPI THE INTERPOLATED POINT LIES. 014 X AND Y COORDINATES . RESP. . DE 101 010 C X11, Y11 = IPI 016 INTERPOLATED POINT. 191 017 THE OUTPUT PARAMETER IS IPI 018 ZII = INTERPOLATED Z VALUE. IPI 019 DECLARATION STATEMENTS 101 020 DIMENSION XD(10),YD(10),ZD(10),1PT(100),1PL(100),PDD(50) IPI 021 COMMON/INGM/NDP.NNP.NT.NL IPI COMMON/IDPI/NCF.ICF IPI 023 DIMENSION CF0(27) IPI EQUIVALENCE (XO+CFO(1)). (YO+CFO(2)). 024 (AP.(FO(3)). 1P1 025 (BP.CFO(4)). (CP.CFO(5)). (DP.CFO(6)). IPI 026 (POO.CFO(7)). (P10.CFO(8)). (P20.CFO(9)). IPI 027 (P30.CF0(10)), (P40.CF0(11)), (P50.CF0(121). IPI (PO1.CFO(13)).(P11.CFO(14)).(P21.CFO(15)). 028 IPI 029 (P31.CF0(16)).(P4).CF0(17)).(P02.CF0(18)). (P12.CF0(19)).(P22.CF0(20)).(P32.CF0(21)). (P03.CF0(22)).(P13.CF0(23)) #P23.CF0(24)). IPI 030 6 LPI 031 IPI. 032 (PO4.CFO(25)).(P14.CFO(26)).(P05.CFO(27)) IPI. DIMENSION 033 CF (980) IPI 034 DIMENSION X(3).Y(3).Z(3).PD(15). IPI 035 ZU(3). ZV(3). ZUU(3). ZUV(3). ZVV(3) IPI 036 (110.FL110) . (11J.FL11J) IPI 037 LU.LV.LUSNUV.LVSNUV IPI 038 EQUIVALENCE (P5.P05) IPI 039 NCFMX/35/ C SETTING OF SOME LOCAL VARIABLES. IPI 040

```
C DETERMINES IF SIMPLE INTERPOLATION IS APPLICABLE.
                                                                                    191 046
    20 IF(ITO.LF.NTL)
                             GO TO 30
                                                                                    101 047
       IL1=ITO/NTL
                                                                                    161
                                                                                        048
       1L2=1T0-11 1*NTL
                                                                                    101
                                                                                        049
       11173=111+3
                                                                                        050
                                                                                    11,1
       11773=11743
                                                                                        051
                                                                                    101
       110=1P((11113)
                                                                                    101
                                                                                        017
       1F(11.1 . NF . 1L21
                             GO TO 40
                                                                                    101
                                                                                        052
C CALCULATION OF ZII BY SIMPLE INTERPOLATION OR EXTRAPOLATION.
                                                                                        054
                                                                                    IPI
    30 ASSIGN 31 TO LBL
                                                                                    101 055
       GO TO 50
                                                                                    IPI
                                                                                        056
    31 211=210
                                                                                    IPI 057
       RETURN
                                                                                        1158
                                                                                    IPI
C CALCULATION OF ZII AS A WEIGHTED MEAN OF TWO EXTRAPOLATED
                                                                                    IPI
                                                                                        059
C VALUES.
                                                                                    IPI
                                                                                        040
   40 ASSIGN 41 TO LBL
                                                                                    101 061
      GO TO 50
                                                                                    101
                                                                                        062
   41 211=210
                                                                                        063
                                                                                    IPI
       1T0=1PL(11.2T3)
                                                                                    101
                                                                                        054
       ASSIGN 42 TO LAL
                                                                                    191
       GO TO 50
                                                                                    101
                                                                                        066
    42 212=210
                                                                                    IP1
                                                                                        067
C CALCULATES THE WEIGHTING COFFFICIENTS FOR EXTRAPOLATED VALUES.
                                                                                    191
   45 1P1=1PL(11173-2)
                                                                                    IP1
                                                                                        069
       1P2=1PL(1L1T3-1)
                                                                                    IPI
       1P3=1PL(1L213-1)
                                                                                    IPI
                                                                                        271
       X1=XD(IP1)
                                                                                    IPI 072
       Y1=YD(IP1)
                                                                                    IP1 073
       X2=XD(1P2)
                                                                                    101 074
       Y2=YD(1P2)
                                                                                    IPI 075
       X3=XD(1P3)
                                                                                    161
                                                                                        076
       Y3=YD(1P3)
                                                                                    IP1 077
       DXD2=XID-X2
                                                                                    [P] 07P
       DY02=Y10-Y2
                                                                                    IPI
                                                                                        079
       DX32=X3-X2
                                                                                    IPI
                                                                                        080
       DY32=Y3-Y2
                                                                                    IPI 081
       DX21=X2-X1
                                                                                    IP1 082
       DY21=Y2-Y1
                                                                                    IPI
                                                                                        083
       W1= (DX02*DX32+DY02*DY32)**2/(DX32*DX32+DY32*DY32)
                                                                                    IPI 084
       WZ= (DX02*DX21+DY02*DY21)**2/(DX21*DX21+DY21*DY21)
                                                                                    IPI 085
C CALCULATES ZII AS A WEIGHTED MEAN.
                                                                                    IPI OR6
   46 Z11=(W1*Z11+W2*Z12)/(W1+W2)
                                                                                    1P1 087
       RETURN
                                                                                    IPI
                                                                                        ORB
C INTERNAL ROUTINE FOR PUNCTUAL INTERPOLATION.
                                                                                    IP1 089
C CHECKS IF THE NECESSARY CFO VALUES ARE SAVED.
                                                                                    IPI 090
                                                                                    191 091
       JCF =- 27
                                                                                    IPI 092
       DO 51 LCF=1.NCF
                                                                                    IPI 093
         JCF=JCF+28
                                                                                    IPI
                                                                                        094
         FLITJ=CFIJCF)
                                                                                    IPI
                                                                                       095
         IF(ITn.ED.ITJ)
                                                                                   IPI nos
   51 CONTINUE
51 CONTINUE
C CALCULATION OF NEW CFO VALUES.
C DETERMINES THE COEFFICIENTS FOR THE COORDINATE SYSTEM TRANS-
C FORMATION FROM THE X-Y SYSTEM TO THE U-V SYSTEM, AND CALCU-
C LATES THE COEFFICIENTS OF THE POLYNOMIAL FOR INTERPOLATION.
                                                                                    IPI
                                                                                        007
                                                                                    1P1 098
                                                                                   IP1 099
                                                                                   IPI 100
                                                                                   IPI
                                                                                        101
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE
                                                                                   Ibl.
                                                                                        102
C VERTEXES.
                                                                                    IPI 103
   60 JIPT=3*(ITO-1)
                                                                                    IPI 104
       JPD=0
                                                                                    IP1
                                                                                        105
       DO 62 1=1.3
                                                                                    IPI 106
         JIPT=JIPT+1
                                                                                    IPI 107
         IDP = IPT (JIPT)
                                                                                    1P1 108
         X(1)=XD(IDP)
                                                                                    191.100
         YIII=YDIIDPI
```

IPI 110

7(1)=7D(1DP)

JPDD=5+(1DP-1)
DO 61 KPD=1+5

I+ODQL =OOQL

100451004=1045104

DETERMINING THE COFFFICIENTS FOR THE COORDINATE SYSTEM TRANSFORMATION FROM THE X-Y SYSTEM TO THE U-V SYSTEM

C CONVERSION OF THE PARTIAL DERIVATIVES AT THE VERTEXES OF THE C TRIANGLE FOR THE U-V COORDINATE SYSTEM

ZUU(1)=AA*PD(JPD-7)+ACT2*PD(JPD-1)+CC*PD(JPD)
ZUV(1)=AB*PD(JPD-7)+ADBC*PD(JPD-1)+CD*PD(JPD)

ZVV(1)=BB*PD(JPD-Z)+BDT2*PD(JPD-1)+DD*PD(JPD)

JPD=JPD+1

CONTINUE

62 CONTINUE

AND VICE VERSA

Yn=Y(1)

A=X (2)-X0

B=X(3)-X0

C=Y(2)-YO

D=Y(3)-YO

DLT=AD-BC

AP= D/DIT

BP=-B/DLT

CP=-C/DLT

DP= A/DLT

ACT7=7.0+4+C

ADBC = AD+PC

BD12=2 . n . B . D

JPD=5+1

1=1.3

ZV(1)=A*PD(JPD-4)+C*PD(JPD-3) ZV(1)=R*PD(JPD-4)+D*PD(JPD-3)

C CALCULATION OF THE COEFFICIENTS OF THE POLYNOMIAL

64 AA=A*A

CC=(*C

AB=A+B

CD=C+D

BB = B * B

DD=D+D

DO 65

65 CONTINUE

66 POO=2(1)

P10=ZU(1)

P01=2V(1)

P11=ZUV(1)

P20=0.5+ZUU(1)

P02=0.5*ZVV(1)

H1=2121-P00-P10-P20

H2=ZU(2)-P10-ZUU(1)

P30= 10.0+H1-4.0+H2+0.5+H3

P40=-15-0*H1+7-0*H2 -H3 P50= 6-0*H1-3-0*H2+0-5*H3 H1=Z(3)-P00-P01-P02 H2=ZV(3)-P01-ZVV(1)

Pn3= 10.0*H1-4.0*H7+0.5*H3

P04=-15.0*H1+7.0*H2 -H2 P05= 6.0*H1-3.0*H2+0.5*H3

H3=ZUU(7)-ZUU(1)

H3=ZVV(3)-ZVV(1)

LU=SORTIAA+CC)

LV=SORT(RR+DD)

THXU=ATANZIC . A)

AD=A*D

BC=B*C

63 XN=X11Y

61

= bern Brazil: Tectonic control

05 Hunt 514 R. Johnson infrared, Graham R. England and G.

523 near-infrared rocks in visible and near-in
H. Goetz, and Roger P. A
d v. Robert K. Vincent

application of northern part of the rson 542 d trial application of

46

260 r ir the Salton Sea geothermal field

omogeneous distribution of LaCoste Ü H Lucien J. s caused by E.

restivity logging

conducting cylinder excited by a 3

alies due to arbitrary with reply by author Z ignetic anomalies due to Ward 199 rit Sherill ration, S. 11

by 2- and 3-dimensional equivalent-point method

tuctive environment

101 111

112

114

116

117

118

119

120

121

123

124

125

126

127

120

129

130

131

132

133

134

135

136

137

136

130

140

141

142

143

144

145

146

147

148

149

150

151

157

153

154

155

156

157

158

160

161

167

164

165

166

167

168

169

170

171

172

173

174

IPI

IPI

IPI

IP!

101

IPI

IPI

1PI

IP1

IPI

IPI 122

IPI

IPI

IPI

IPI

IPI

IPI

101

IPI

IPI

IPI

IPI

IPI

IPI

IPI

IP1

IPI

IPI

IPI

IPI

191

IPI

IPI .159

IPI

IPI 175

```
THUV=ATANZID+B1-THXII
         CSUV=COSITHUVI
                                                                                  101 176
         P41=5.0*LV*CSUV/LIJ*P50
                                                                                  pr
                                                                                      177
         P14=5.0+LU+CSUV/LV+P05
                                                                                  101
                                                                                      170
         H1=2V(2)-P01-P11-P41
                                                                                  101
                                                                                      170
         H7=711V121-P11-4.0.0041
                                                                                  101
         P71= 3.0.H1-H2
                                                                                  101
                                                                                      101
         P31=-2.0*H1+H2.
H1=ZU(31-P10-P11-P14
                                                                                      187
                                                                                  101
                                                                                  101
                                                                                      103
         H2=ZUV(3)-P11-4.0*P14
                                                                                 101
                                                                                      194
         P12= 3.0+H1-H2..
                                                                                 IPI
                                                                                      185
         P13=-2.0*H1+H2
                                                                                 IPI 10%
         THUS=ATANZID+C+B-A1-THXU
                                                                                 IPI
                                                                                      197
         THSV=THUV-THUS
                                                                                 IDI
                                                                                     100
         SNUV=SIN(THUV)
                                                                                 IP1 189
        LUSNUV=LU+SNUV
                                                                                 101
                                                                                     190
        LVSNUV=LV*SNUV
                                                                                 101
                                                                                     101
        AA = SINTTHSVI/LUSNUV
                                                                                 101 102
        BB=-COS(THSV)/LUSNUV
                                                                                 101
                                                                                     102
        CC= SINITHUSI/LVSNUV
                                                                                 IPI
                                                                                     194
        DD= COSITHUS 1/1 VSNUV
                                                                                 101
                                                                                     195
        AC=AA+CC
                                                                                 101
                                                                                     106
        AD=AA*DD
                                                                                 191
                                                                                     107
        BC=BB*CC
                                                                                 101
                                                                                     100
        G1=AA*AC*(3.0*BC+2.0*AD)
                                                                                 IPI
                                                                                     199
        G2=CC*AC*(3.0*AD+2.0*BC)
                                                                                101
                                                                                     200
       H1=-AA*AA*AA*(5.0*AA*BB*P50+(4.0*B(+AD)*P4])
                                                                                IPI
                                                                                    201
          -CC*CC*CC*15.0*CC*DD*P05+14.0*AD+BC1*P141
                                                                                191
                                                                                     202
       H2=0.5+ZVV(21-P02-P12
                                                                                161
                                                                                    203
       H3=0.5+ZUU(3)-P20-P21
                                                                                101
                                                                                    204
       P22=(G]+H2+G2+H3-H] 1/(G]+G2)
                                                                                101 205
       P32=H2-P27
                                                                                1P1 206
       P23=H3-P22
                                                                                101
 C SAVES THE CEN VALUES IN THE CE ARRAY.
                                                                                    207
                                                                                101
                                                                                    200
    67 IFINCF.LT.NCFMX1 NCF-107+1
                                                                                IDI
                                                                                    200
       ICF=ICF+1
                                                                                IP1 210
       IFIICF . GT . NCFMX)
                                                                                IPI 211
       JCF=28+1CF-27
                                                                                101 212
       CF(JCF)=FLITO
                                                                                IPI 213
       DO 68 FCF=1.27
                                                                               IPI
                                                                                    214
         JCF=JCF+1
                                                                               IPI
                                                                                    215
         CF(JCF)=CFO(KCF)
                                                                               IPI 216
   68 CONTINUE
                                                                               IPI
                                                                                   217
       GO TO BO
                                                                               IP1 218
C LOADS THE CFO VALUES FROM THE CF ARRAY.
                                                                               IPI 219
   70 DO 71 KCF=1.27
                                                                               IP1 220
         JCF=JCF+1
                                                                               IPI 221
         CFO(KCF)=CF(JCF)
                                                                               IPI 222
   71 CONTINUE
C TRANSFORMATION OF THE COORDINATE SYSTEM FROM X-Y TO U-V
                                                                               IPI
                                                                                   223
                                                                               IPI
                                                                                   224
                                                                               IPI
                                                                                   225
      DY=YII-YO
                                                                              IPI
                                                                                   226
      U=AP+DX+RP+DY
                                                                               IPI
                                                                                   227
      A*Cb*DX+Db*DX
C FVALUATION OF THE POLYNOMIAL
85 PO=PON+U*(P10+U*(P20+U*(P30+U*(P40+U*P50))))
                                                                               IPI
                                                                                   22A
                                                                              191
                                                                                  229
      P1*P01+U*(P11+U*(P21+U*(P31+U*P411))
                                                                               IPI
                                                                              IPI 231
      P2=P02+U+(P12+U+(P27+U+D37))
                                                                              IPI
                                                                                  232
      P3=P03+U*(P13+U*P23)
                                                                              IPI 233
      P4=P04+U*P14
                                                                              IPI 234
      ZIO=P0+V*(P1+V*(P2+V*(P3+V*(P4+V*P5))))
                                                                              IPI 235
      GO TO LBL . (31.41.42)
                                                                              IPI 236
      END
                                                                              IPI 237
```

IPI 238

```
....
      GO TO 24
                                                                                     151 017
   22 FNOPPV=WY (1)
                                                                                          0/ 0
                                                                                      111
      FNNPPV=WY (7)
                                                                                     15F 040
       IF (NDPO.NE.NDPPV)
                             GO TO 90
                                                                                      15F 070
                            GO TO 90
       IF (NNPO.NF.NNPPV)
                                                                                          071
                                                                                      ISF
       IF (MDn.NE.3)
                                                                                          072
                                                                                      150
   23 FNX [PV=Wr (3)
                                                                                      15F 073
       FNYIPV=WY (4)
                                                                                          074
                                                                                      11.5
       IF (NX 10 . NF . NX 1PV)
                             GO TO 90
                                                                                      15.6
                             GO TO 90
       IF (NYIO. NF . NYIDV)
                                                                                      1 CF 076
       GO TO 30
                                                                                      15.
                                                                                          077
   24 WK (3) = FNX 10
                                                                                          07P
                                                                                      155
       WK (4) = FNYIO
                                                                                          070
C ALLOCATION OF STORAGE AREAS IN THE WK ARRAY. (ALL MD)
                                                                                      15.5
                                                                                          OPO
                                                                                      15.5
   30 NDNDM1 = NDPO + (NDPO-1)
                                                                                          ORI
                                                                                      15.1
       IWIPT=7
                                                                                          082
                                                                                      1 . F
       IWIPL = IWIPT+NDNDM1
                                                                                          093
                                                                                      15.1
       IWIPN= IWIPL +NDNDM1
                                                                                          084
                                                                                      ISF
       IWPD = IWIPN+NDPO+NNPO
                                                                                          005
IWIT = IWPD + NDPO*5

C DIVIDES THE X-Y PLANE INTO A NUMBER OF TRIANGLES AND
C DETERMINES NNP POINTS NEAREST EACH DATA POINT. (MD=1)
                                                                                      ISF
                                                                                          086
                                                                                      ISF
                                                                                           087
                                                                                      ISF
                                                                                      ISF
                                                                                          OPR
   40 1F (MD.GT.1) 60 TO 42
    41 CALL IDGFOM(XD.YD.WK(IWIPT).WK(IWIPL).WK(IWIPN))
                                                                                      15F 089
                                                                                      15.5
                                                                                           000
       WK 15 1 = FNT
                                                                                      ISF
                                                                                           091
       WK (6) = FNL
                                                                                      ISE
                                                                                           092
       GO TO 50
                                                                                           003
                                                                                      ISF
    42 FNT = WK (5)
                                                                                           1194
                                                                                      151
       FNL = WK (6)
C ESTIMATES PARTIAL DERIVATIVES AT ALL DATA POINTS. (ALL MD)
                                                                                           095
                                                                                      1 S.F
                                                                                      ISF
                                                                                           096
    50 CALL IDPDRV(XD.YD.ZD.WK(IWIPN).WK(IWPD))
                                                                                      15F
C LOCATES ALL INTERPOLATED POINTS. (MD=1.2)
                                                                                      ISF
                                                                                           nga
    60 IF (MDO. E0.3)
                        GO TO 70
                                                                                       15F
                                                                                           (199
        1x1=0
                                                                                       155
                                                                                           100
        JWIT=IWIT-1
                                                                                       15F
                                                                                           101
        INC =-1
                                                                                       ISF
                                                                                           102
        DO 62
                1Y1=1 .NY10
                                                                                       ISF
                                                                                           103
          INC =- INC
                                                                                       ISF
                                                                                           104
          Y11=Y1(1Y1)
                                                                                       15F
                                                                                           105
          DO 61 1X10=1+NX10
1X1=1X1+1NC
                                                                                       ISF
                                                                                           106
                                                                                       15F
                                                                                           107
             JWI+TIWL=TIWL
                                                                                            108
                                                                                       1SF
            CALL IDLCTN(XD.YD.WK([WIPT).WK([WIPL).
                                                                                       15F
                                                                                           109
                          XI(IXI).YII.WK(JWIT))
                                                                                       ISF
                                                                                            110
          CONTINUE
                                                                                       ISF
                                                                                            111
          1 X 1 = 1 X 1 + 1 NC
                                                                                       ISF
                                                                                            112
          OIXM+JMI+TIWL=TIWL
                                                                                       155
                                                                                            113
     62 CONTINUE
                                                                                       15F
 C INTERPOLATION OF THE ZI VALUES. TALL MOI
                                                                                       15F 115
     70 NCF=0
                                                                                       15F
                                                                                            116
        1CF = 0
                                                                                       15F 117
         JWIT-IWIT-1
                                                                                     · '15F
                                                                                            118
        1 X 1 = 0
                                                                                       ISF 119
         121=0
                                                                                       15F
                                                                                            120
         1NC=-1
                                                                                       15F 121
                1Y1=1+NY10
        DO 72
                                                                                       ISF
                                                                                           122
           INC =- INC
                                                                                       tSF 123
           Y11=Y1(1Y1)
                                                                                       ISF
                                                                                            124
           DO 71 1X10-1.NX10
                                                                                       ISF
                                                                                            125
             JWIT=JWIT+INC
                                                                                       ISF
                                                                                            126
             1 x 1 = 1 X I + 1 NC
                                                                                       ISF
                                                                                            127
              121=121+1NC
                                                                                       15F 128
             CALL IDPTIP(XD.YD.ZD.W (IWIPT).WK(IWIPL).WK(IWPD).
                                                                                       ISF
                                                                                            129
                            WK (JWIT) + 21 ( 1 X I ) + Y | 1 + Z | ( | Z | ) )
                                                                                       15F 130
```

CONTINUE

	SUBROUTINE IDSEFT (MD. NDP. XD. YD. ZD. WK . NXI . NYI . XI . YI . ZI)	156 (41
C	THIS SUBROUTINE PERFORMS SMOOTH SURFACE FITTING WHEN THE PRO-	150 002
0	SECTIONS OF THE DATA POINTS IN THE X-Y PLANE ARE TRREGULARLY	100 000
-	THE INPUT PARAMETERS ARE	198 166
-	MD = MODE OF COMPUTATION (MUST BE 1. 2. OR 3).	125 000
0	= 1 FOR NEW XD-YD.	ICE CON
r	= 2 FOR OLD XD-YD, NEW XI-YI.	155 050
(= 3 FOR OLD XD-YD. CLD X!-YI.	150 000
C	NDP = NUMBER OF DATA POINTS IMUST RE 4 OR GREATERI.	15F 01'
C	XD = ARRAY OF DIMENSION NOP STORING THE X COORDINATES	150 011
C	OF THE DATA POINTS.	15F 012
C	YD = ARRAY OF DIMENSION NOP STORING THE Y COORDINATES	15F 013
(OF THE DATA POINTS.	155 914
C	ZD = ARRAY OF DIMENSION NOP STURING THE Z COOPDINATES	155 915
(OF THE DATA POINTS.	100 016
(WK = ARRAY OF DIMENSION (2*NDP+NND+5)*NDP+NXI*NYI	101 614
C	TO BE USED AS A WORK AREA. NXI = NUMBER OF OUTPUT GRID POINTS IN THE X COORDINATE	150 010
ć	(MUST BE 1 OR GREATER).	15F 019
ċ	NYI = NUMBER OF OUTPUT GRID POINTS IN THE Y COORDINATE	155 020
c	(MUST BE 1 OR GREATER),	15F 021
C	XI = ARRAY OF DIMENSION NXI STORING THE X COORDINATES	15F 022
-	OF THE OUTPUT GRID POINTS.	15F 024
C	YI = ARRAY OF DIMENSION NYI STORING THE Y COORDINATES	15F 025
C	OF THE OUTPUT GRID POINTS.	15F 026
(WHERE NNP IS THE NUMBER OF ADDITIONAL DATA POINTS USED FOR	150 027
C	ESTIMATING PARTIAL DERIVATIVES AT EACH DATA POINT. THE VALUE	15F 028
(OF NAP MUST BE GIVEN THROUGH THE IDAN COMMON. NAP MUST BE 2	TSF 6.29
C	OR GREATER . PUT SMALLER THAN NOP .	156 020
	THE OUTPUT PARAMETER IS	15F G31
C	ZI = DOUBLY-DIMENSIONED ARRAY OF DIMENSION (NXI-NYI).	ISE 032
C	WHERE THE INTERPOLATED Z VALUES AT THE OUTPUT GRID POINTS ARE TO BE DISPLAYED.	15F 033
c	THE LUN CONSTANT IN THE DATA INITIALIZATION STATEMENT IS THE	15F 034
c	LOGICAL UNIT NUMBER OF THE STANDARD OUTPUT UNIT AND IS.	15F 035
C	THEREFORE . SYSTEM DEPENDENT.	ISF 036 ISF 037
C	DECLARATION STATEMENTS	15F 03B
	DIMENSION XD(10) . YD(10) . ZD(10) . WK(1000) .	ISF 039
	1 X1(10).Y1(10).Z1(100)	15F 040
	COMMON/IDMM/MMb	15F 041
	COMMON/INGM/NDPC+NT+NL	15F 042
	COMMON/IDPI/NCF.ICF EQUIVALENCE (FNDPO.NDPO). (FNDP.V.NDPPV).	15F 043
	1 (FNNPO+NNPO+, FNNPPV+, NNPPV+,	15F 044
	2 (FNXIO.NXIO).(FNXIPV.NXIPV).	1SF 045
	3 (FNYIO.NYIO).(FNYIPV.NYIPV).	1SF 046
	4 (FNT.NT).(FNL.NL)	ISF 047
	DATA LUN/6/	15F 048
C	SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES. (ALL MD)	ISF 050
	10 MD0=MD	15F 251
	NDP0=NDP	15F 052
	NDPC=NDPO	ISF 053
	NXIO=NXI	15F 054
	NYIO=NYI NNPO=NNP	ISF 055
	NNPC=NNPO	ISF .056
-	ERROR CHECK. (ALL MD)	ISF 057
37	20 1F(MDD+LT+1+0R+MDD+GT+3) GD TD 90	15F 05A
	1F(NDPO-LT-4) GO TO 90	ISF 059
	1F(NX10-LT-1-OR-NY10-LT-1) GO TO 90	15F 060
	IFINNPO.LT.2.OR.NNPO.GE.NDPO1 GO TO 90	ISF 062
	IF (MDO.NE.1) GO TO 22	ISF 063
	21 WK(1)=ENDPO	1SF 064
	WK(2)=FNNPO	ISF 065

tudy in the Salton Sea geothermal field.

system, Lucien J. B. LaGoste 594 Sinhomogeneous distribution of Bhar acharysa and K. C. Chan 602

s caused by 2- and 3-dimensional ization by equivalent-point method

f restivity logging tools,

n. var infrared, Graham R. Hunt 50;

ern Brazil; Tectonic control of

ng data interpretation.

OTE SENSING Watson, Editors and G. R. Johnson 514

5. visible and near-infrared F. t. vioetz, and Roger P. Ashley. 522

data, Robert K. Vincent 536 in the northern part of the v1 Supson 542

e art and trial application of factor

005 " " 260

rt E. Sheriff 667

OTE SENSING Watson, Editors

g data interpretation,

OIXN+JNI+TIWL=TIWL

C FORMAT STATEMENT FOR FREOR MESSAGE 2090 FORMAT (1X/41H *** IMPROPER 1

90 WRITE (LUN. 2090) MDO. NDPO. NXID. NYID. NNPO

3 35H ERROR DETECTED IN ROUTINE

1 7H MD =+14+10X+5HNDP =+16+10X+5HNX1 =+16+ 2 10X+5HNY1 =+16+10X+5HNNP =+16/

C THIS SUBPROGRAM ENTERS A NUMBER INTO THE NNP CONSTANT IN THE C IDNN COMMON, WHERE NNP IS THE NUMBER OF ADDITIONAL DATA POINTS C USED FOR ESTIMATING PARTIAL DERIVATIVES AT EACH DATA POINT IN C THE IDBVIP/IDSFFT SUBPROGRAM PACKAGE. NNP IS SET TO 4

IMPROPER INPUT PARAMETER VALUE(5)./

IDSFFT/)

121=121+1NC+NX10

1 X 1 = 1 X 1 + 1 NC

72 CONTINUE

RETURN

BLOCK DATA

C INITIALLY BY THIS SURPROGRAM.

COMMON/IDNN/NNP

DATA NNP/4/

FND

C NORMAL FXIT

AN RETURN

ERROR FXIT

503 Hunt "ar infrared, Graham R

522

in the northern part of the

e art and trial application of factor tocks in visible and near-infrared H. Gnetz, and Roger P. Ashley and and G. R. Johnson 514 data, Robert K. Uncent 5.96

tudy in the Salton Sea geothermal field,

o inhomogeneous distribution of Bhattacharysa and K. C. Chan 602 es caused by 2- and 3-dimensional ization by equivalent-point method

restivity logging tools

ductive environment

121

133

134

135

126

130

140

144

ISF

ISE

ISF

15F

ISF

1SF

ISF

15F

15F

ISF

1SF ISF 143

ISF

ISF

180 006

IBD OOT

IBD 002 1BD 003 180 004 18D 005

IBD OO7

1BD 008

1BD 009

rate, conducting exlinder exerted by progr. 661 agnetic anomalies due to arbitrary

Z ert E. Sheriff 667

thern Brazil: Tectonic control of it Offield, I's 4. Abbott. 260

50

REFERENCES

- Ackland, T. G. (1915), On osculatory interpolation, where the given values of the function are at unequal intervals, J. Inst. Actuar., 49, 369-375.
- Akima, Hiroshi (1974a), A method of bivariate interpolation and smooth surface fitting based on local procedures, Commun. ACM, 17, 18-20.
- Akima, Hiroshi (1974b), Algorithm 474, Bivariate interpolation and smooth surface fitting based on local procedures, Commun. ACM, 17, 26-31.
- American National Standards Institute (ANSI) (1966), ANSI Standard Fortran, Publication X3.9-1966, ANSI, New York. Also reproduced in W. P. Heising, History and summary of FORTRAN standardization development for the ASA, Commun. ACM, 7, 590-625, Oct. 1964.
- Bengtsson, Bengt-Erik, and Stig Nordbeck (1964), Construction of isarithms and isarithmic maps by computers, BIT, 4, 87-105.
- Shepard, Donald (1968), A two-dimensional interpolation function for irregularly-spaced data, Proc. 1968 ACM National Conference, 517-524.
- Zenisek, Alexander (1970), Interportation polynomials on the triangle, Numerische Math., 15, 283-296.
- Zlamal, Milos (1968), On the finite element method, Numerische Math., 12, 394-409.

BIBLIOGRAPHIC DATA SHEET

OTR 75-70	3. Recipient's Accession No.				
A Method of Bivariate Interpolation and Smooth	5. Publication Date August 1975				
Surface Fitting for Values Given at Irregularly Distributed Points	6. Performing Organization Code OT/ITS				
Hiroshi Akima	9. Project/Task/Work Unit No.				
Office of Telecommunication Sciences Institute for Telecommunication Sciences 325 Broadway, Boulder, Colorado 80302	10. Contract/Grant No.				
. Sponsoring Organization Nume and Address	12. Type of Report and Period Covere				
	13.				
4. SUPPLEMENTARY NOTES					

15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography of literature survey, mention it here.)

A method of bivariate interpolation and smooth surface fitting is developed for z values given at points irregularly distributed in the x-y plane. The interpolating function is a fifth-degree polynomial in x and y defined in each triangular cell which has projections of three data points in the x-y plane as its vertexes. Each polynomial is determined by the given values of x and estimated values of partial derivatives at the vertexes of the triangle. Procedures for dividing the x-y plane into a number of triangles, for estimating partial derivatives at each data point, and for determining the polynomial in each triangle are described. A simple example of the application of the proposed method is shown. User information and Fortran listings are given on a computer subprogram package that implements the proposed method.

16. Key words (Alphabetical order, separated by semicological)

bivariate interpolation; interpolation; partial derivative; polynomial; smooth surface fitting.

17. AVAILABILITY STATEMENT [X] UNLIMITED.	18. Security Class (This report) Unclassified	20. Number of pages 58
FOR OFFICIAL DISTRIBUTION.	19. Security (lass (This page) Unclassified	21. Price:

QU'S GOVERNMENT PRODUCT OPENT 1975 AND 1527 M SECTION NO.

Splines in geophysics

Pedro Gonzalez-Casanova* and Roman Alvarez‡

ABSTRACT

Modeling and contouring of geophysical data often require distributions of regularly spaced values. Splines have been shown to be the most accurate methods to obtain such distributions. We emphasize the general problem of interpolating random distributions of data on a given surface.

Splines are classified into unidimensional, quasibidimensional, and strictly bidimensional; based on this classification, a systematic derivation of the corresponding interpolating techniques is conducted. Two approaches are presented to obtain unidimensional splines: one based on the continuity of the first and second derivatives of the polynomials involved, and the other based on a variational approach. Quasibidimensional splines are constructed based on the unidimensional approach, while strictly bidimensional splines are generated by minimizing the bidimensional curvature. Quasi-bidimensional splines can be used for processing data distributions along nearly parallel lines; linear projections and parameterization are the techniques used in interpolating this type of distribution. Strictly bidimensional splines minimize curvature through the analytic solution of the Euler-Lagrange equation or by a finite-difference algorithm. The maximum error, mean error, and standard deviation between interpolated data and exact field values produced by various prisms show that quasi-bidimensional splines are 2.7 percent more accurate in the maximum error than strictly bidimensional splines when both techniques are applied to regularly spaced data. However, for irregularly spaced data, three examples containing 300, 600, and 900 random data points show the superiority of the thin-plate approach over the quasibidimensional splines. A comparison between various interpolation densities on regular grids, starting from a set of 327 randomly distributed magnetic stations, illustrates some differences between geophysically meaningful interpolations and interpolations carried out only for contouring purposes.

INTRODUCTION

When geophysical data are presented in the form of contours, automatic contouring is often performed by interpolating a distribution of regularly spaced discrete data points. Since field data are seldom regularly spaced, methods must be provided for obtaining a regular network from irregularly spaced data.

Interpolating irregularly spaced field data by hand is essentially a linear process in which the concept of maximum smoothness is implicitly applied. Mathematically, the continuity of a function and its first and second derivatives at discrete, observed points lead to contour smoothness.

Crain and Bhattacharyya (1967) introduced qualitative criteria to evaluate accuracy versus computation time. The highest quantitative accuracy was attained by least-squares methods using orthogonal polynomials generated by the Gram-Schmidt method. Subsequently, Bhattacharyya (1969) proposed a method of interpolation based on cubic-order sur-

faces; he concluded this method was more accurate than using orthogonal polynomials. Various papers followed this approach and introduced variations to such an algorithm (Thomson, 1970; Heissing et al., 1972; Rasmussen and Sharma, 1979).

Crain (1970) established a two-fold classification scheme of interpolation methods: (1) methods of mathematical surfaces, and (2) methods of numerical surfaces. The first group produces an analytical surface passing through a set of observed points, while the second group develops interpolated points, from the distribution of neighboring, observed points.

SPLINE CLASSIFICATION

A thin metallic strip when flexed and forced to pass through a set of points in the XY plane generates a unidimensional spline. Reinsch (1967) showed that such a curve corresponds to a set of cubic polynomials, each describing the curve between two successive observed values. These polynomials

Manuscript received by the Editor November 28, 1984; revised manuscript received April 4, 1985.
*Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D. F., Mexico.
†Instituto de Investigaciones, en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, 01000 Mexico, D. F., Mexico.

1985 Society of Exploration Geophysicists. All rights reserved.

maintain continuity of the cubic functions and their first and second derivatives at every point (joint) in which the polynomials meet. Bicubic splines contain essentially the same concept. The metallic plate is assumed deformed by forces acting at each observed point applied to fit it; boundary conditions are required to fix the perimeter of the plate.

Since 1960 splines have been used for the interpolation of irregularly spaced geophysical data along a line (e.g., Ahlberg et al., 1967). Spline interpolation also found its way into bidimensional interpolation starting from regular grids (Bhattacharyya, 1969; Heissing et al., 1972; Dooley, 1976). Other algorithms have been proposed for the interpolation of irregularly spaced data on a plane (e.g., Briggs, 1974). Rasmussen and Sharma (1979) brought up the problem of precise interpolation in terms of absolute errors. They evaluated spline interpolation and concluded that for various causative bodies and conditions, spline interpolation yielded excellent results. However, their results are for data aligned along parallel lines, not for completely random data points. The distinction is important since the same algorithms do not work properly for random data.

Here we emphasize interpolation of truly random distributions of data points on a given surface using variational and minimum-curvature approaches. We base the work on that of Duchon (1975), Paihua and Utrera (1976), and Wahba and Wendelberger (1980) who proposed a substantially different construction of the analytical surfaces involved. Their algorithms are only beginning to find their way into the treatment of geophysical data.

For clarity, we classify splines as: (1) unidimensional, (2) quasi-bidimensional, and (3) strictly bidimensional. Quasi-bidimensional splines correspond to data roughly aligned along straight lines, such as flight lines, while strictly bidimensional splines correspond to distributions of truly random data.

UNIDIMENSIONAL SPLINES

We review two approaches for generation of unidimensional splines. The first approach adjusts a curve of cubic polynomials to n points distributed in the XY plane. The second approach uses a thin metallic strip flexed in such a way that it passes through all the points of the distribution. According to Hamilton's principle of least action, the curve obtained will be the one that minimizes the energy of flexure of the metallic strip.

Cubic splines

We consider a distribution of points $x_i (i = 1, ..., n)$ with $x_{i-1} < x_i$, and a set of functions $\{u(x)\}$ that take values u_i at such points. The interpolation function u(x), as pointed out previously, is formed by cubic polynomials at each interval $[x_{i-1}, x_i]$. We call $P_i = u_i'(x)$ the first derivative of the function $u_i(x)$ at a joint. The cubic polynomial between two joints can be properly described if its four coefficients are known. Assuming the values of the function and its first derivatives are known at two successive joints, this procedure yields four linear equations that can be solved for the four unknown coefficients.

At two successive joints a and h

$$C(a) = \alpha_0$$
.

$$C'(a) = \alpha_1,$$

 $C(b) = \alpha_0 + \alpha_1(b-a) + \alpha_2(b-a)^2 + \alpha_3(b-a)^3,$ (1)

and

$$C'(b) = \alpha_1 + 2\alpha_2(b-a) + 3\alpha_3(b-a)^2.$$

Let $C = \underline{M}\alpha$ be the corresponding matrix equation. Solving the system

$$\alpha = (M^{-1})C$$

and substituting the values of α in the general formula for a cubic polynomial, we obtain

$$C(x) = C(a) + C'(a)(x - a)$$

$$+ \left[3 \frac{C(b) - C(a)}{(b - a)^2} - \frac{C'(b) + 2C'(a)}{(b - a)} \right] (x - a)^2$$

$$+ \left[\frac{-2}{(b - a)^3} \left(C(b) - C(a) \right) + \frac{C'(a) + C'(b)}{(b - a)^2} \right] (x - a)^3. \tag{2}$$

Expression (2) corresponds to the polynomial between joints a and b. Therefore, given the values of a function at two successive points, as well as its first derivatives evaluated at such points, there is one and only one cubic polynomial that passes through them. Thus with n points and their first derivatives, there is one and only one set of cubic polynomials passing through them.

However, we assume that at each u_i the value of the first derivative is also known. In practice this is a restrictive condition since normally the field values (e.g., magnetic, gravity) are known but not the values of their derivatives (i.e., the derivatives at the joints). However, this can be overcome assuming that (1) the first derivatives at the first and last points are known, and (2) the curve formed by the polynomials is continuous in the second derivative. The latter condition results in a new set of linear equations from which we can obtain the first derivatives at intermediate points P_2 , ..., P_{n-1} .

 P_{n-1} . Take three successive points x_0 , x_1 , and x_2 and let v(x) and w(x) be two cubic polynomials that satisfy

$$u_1 = v(x_1) = w(x_1)$$
 and $P_1 = v'(x_1) = w'(x_1)$. (3)

Differentiating equation (2) twice and making $a = x_1$ and $b = x_0$, and equating $v''(x_1)$ to $w''(x_1)$, we obtain

$$\begin{split} \Delta x_1 v'(x_0) + 2(\Delta x_1 + \Delta x_0) P_1 + \Delta x_0 w'(x_2) \\ &= 3 \left\{ \frac{\Delta x_0}{\Delta x_1} \left[w(x_2) - w(x_1) + \frac{\Delta x_1}{\Delta x_0} v(x_1) - v(x_0) \right] \right\}. \end{split}$$

A recurrence relation is obtained in the following form; it allows computation of intermediate derivatives:

$$\Delta x_i P_{i-1} + 2(\Delta x_i + \Delta x_{i-1}) P_i + \Delta x_{i-1} P_{i+1}$$

$$= 3 \left[\Delta x_{i-1} \frac{\Delta u_i}{\Delta x_i} + \Delta x_i \frac{\Delta u_{i-1}}{\Delta x_{i-1}} \right], \quad i = 1, \dots, I-1. \quad (4)$$

Such a relationship is linear with l-1 unknowns in P_i , with $i=1,\ldots,l-1$; it has a tridiagonal matrix that is strictly diagonal dominant. This is easily shown by dividing equation (4) by $(\Delta x_i + \Delta x_{i-1})$ and writing the corresponding matrix equation. Since

$$\frac{\Delta x_{i-1}}{\Delta x_i + \Delta x_{i-1}} = 1 - \frac{\Delta x_i}{\Delta x_{i-1} + \Delta x_i},$$

and since ui, are the elements of the coefficient's matrix, then

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$
 (i.e., $|a_{ii}| = 2$

and

$$\sum_{i \neq i} |a_{ij}| = 1).$$

Thus, the only additional condition for the matrix to be diagonal dominant is that the off-diagonal elements in the first and last rows, are less than 2. In this case equation (4) contains nonzero eigenvalues (Marcus, 1960). Consequently, we are dealing with a singular matrix with I-1 linearly independent equations, implying that the $P_i(i=1,\ldots,i-1)$ unknowns are uniquely determined. Thus, demanding continuity of the first and second derivatives at the joints results in a piece-wise smooth, cubic polynomial, with values u_i in $u(x_i)$.

Variational approach

According to Hamilton's principle of least action, a flexed metallic strip adopts the shape that minimizes the flexing energy. This energy is proportional to the square of the curvature of the strip. The integral of action J is given by

$$J = \int (g'')^2 dx. \tag{5}$$

The action J has to be minimized, yielding a function $g(x_i) = y_i$ (i = 0, ..., n), such that y_i are known field values and x_i are the coordinates of these values. If we let $g(x, \alpha) = g(x, 0) + \alpha h(x)$ be the variated trajectory, then the condition for finding an extremum is

$$\left[\frac{\partial J(\alpha)}{\partial \alpha}\right]_{\alpha=0} = 0. \tag{6}$$

We could now directly obtain the Euler-Lagrange equation, forcing the strip to pass exactly through the observed points. However, we take advantage of the simplicity of the unidimensional case and introduce the concept of smoothing in the variational approach.

If the strip passes not exactly on the points but in their neighborhood, the strip deformation is smaller and the corresponding curve is smoother. The smoothness depends upon the radius of the neighborhood; this condition is expressed mathematically by

$$\sum_{i=0}^{n} \left(\frac{g(x_i) - y_i}{\delta y_i} \right) \le s, \tag{7}$$

where s is a factor that multiplies the radii of all the neighborhoods. The parameter δy_i controls the degree of smoothness at each observed point. The inequality (7) can be expressed as an equality with the aid of an additional, arbitrary parameter z:

$$\sum_{i=0}^{n} \left(\frac{g(x_i) - y_i}{\delta y_i} \right)^2 = s - z^2.$$
 (8)

Therefore, z represents how close the deformation lies to y_i ; the smaller z, the closer the deformation to y_i .

The function g(x) minimizes J and complies with the re-

****{*!**

strictions imposed on the strip; thus, from equations (5) and (8)

$$J = \int_{x_n}^{x_n} [g''(x)]^2 dx + P \left[\sum_{i=0}^n \left(\frac{g(x_i) - y_i}{\delta y_i} \right)^2 + z^2 - s \right], \tag{9}$$

where P represents a Lagrangian multiplier.

By demanding that the additional condition

$$\frac{\partial J(z)}{\partial z} = 0 \tag{10}$$

is met, the strip is forced to be in the neighborhood (δy_i) of, but as close as possible to, each y_i .

From equations (6), (9), and (10) and assuming that the derivatives at the end of the strip are zero (i.e., the strip is fixed horizontally at the extrema), we obtain

$$\int_{x_0}^{x_*} (g''''h(x) dx + \sum_{i=1}^{n-1} h'(x_i) [g''(x_i)_- - g''(x_i)_+]$$

$$+ \sum_{i=1}^{n-1} h(x_i) \left[(g'''(x_i)_+ - g'''(x_i)_-) + 2P\left(\frac{g(x_i)_- y_i}{\delta y_i^2}\right) \right] = 0.$$
(11)

However, since the function h(x) is arbitrary, the terms in $h(x_i)$ and $h'(x_i)$ are linearly independent. On the other hand, summations contain only discrete values of h, while the integral contains all the values of h(x) between values x_0 and x_n . The only possibility for the terms to be zero in equation (11) is that they are zero independently.

Consequently, we obtain from the first term

$$g''''(x) = 0$$
 (Euler-Lagrange's equation), (12)

and from the second and third terms

$$-g'''(x_i)_+ + g'''(x_i)_- = 2P\left(\frac{g(x_i) - y_i}{\delta y_i^2}\right),$$

$$g''(x_i)_+ - g''(x_i)_- = 0,$$

$$g'(x_i)_+ - g'(x_i)_- = 0,$$

$$g(x_i)_+ - g(x_i)_- = 0.$$
(13)

and

One solution of equation (12) is

$$g_{x_i}(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
. (14)

Determination of the coefficients of this polynomial is made starting from the continuity conditions in equation (13). From the continuity of the second derivative we have

$$d_i = \frac{c_{i+1} - c_i}{3h_i} \tag{15}$$

and from the continuity of g(x) we have

$$b_i = \frac{a_{i+1} - a_i}{h_i} - c_i h_i - \tilde{d}_i h_i^2,$$
 (16)

Thus, we define

$$h_i = x_{i+1} - x_i$$
,
 $C = (C_1, \dots, C_{n-1})^T$,

$$\mathbf{y} = (y_0, \dots, y_n)^T,$$

$$\mathbf{a} = (a_0, \dots, a_n)^T,$$

and

$$\mathbf{D} = \operatorname{diag}\left(\delta y_0, \ldots, \delta y_n\right).$$

T is a tridiagonal matrix of order n-1 with terms

$$t_{i,j} = 2(h_{i-1} + h_i)/3,$$

and

$$t_{i,i+1} = t_{i+1,i} = h_i/3,$$

and Q is a tridiagonal matrix with terms

$$q_{i-1,i} = 1/h_{i-1}; \quad q_{ii} = -1/h_{i-1} - 1/h_i; \quad q_{i+1,i} = 1/h_i.$$

We obtain from the continuity of the first and third derivatives

$$(\mathbf{Q}^{\mathsf{T}}\mathbf{D}^{2}\mathbf{Q} + P\mathbf{T})\mathbf{C} = P\mathbf{Q}^{\mathsf{T}}\mathbf{y},\tag{17}$$

and

$$a = y - P^{-1}Q^2QC$$
. (18)

Thus, if we know the value of the Lagrangian parameter P, from equation (17) we can obtain the vector C, and from equation (18) we obtain vector a. The remaining coefficients d_i and b_i can be calculated from the recurrence formulas (15) and (16). We have thus determined the values of the coefficients of the cubic polynomial at each interval.

From equations (8) and (10) we obtain

$$Pz = 0, (19)$$

and defining a function F(P) as

$$F(P) = \mathbf{D} \mathbf{Q} (\mathbf{Q}^T \mathbf{D}^T \mathbf{D}^2 \mathbf{Q} + P \mathbf{T})^{-1} \mathbf{Q}^T \mathbf{y}, \qquad (20)$$

equation (8) can be written as

$$F^{2}(P) = s - z^{2}. (21)$$

From equation (19) two possible solutions are obtained: P = 0 or z = 0. In the former, boundary conditions do not affect J and the polynomial is reduced to a straight line. In the latter, and using equation (21), the polynomial reduces to

$$F(P) = s^{1.2}. (22)$$

The solution of equation (22) lets us get the value of P. With this last step the parameters necessary to interpolate are completely determined.

In summary, equations (15), (16), and (18) represent the algorithm for obtaining 1-D interpolations with the variational (i.e., cubic functions) approach. Equation (12) shows that one possible solution of the functional of equation (5) is a set of cubic splines. Obviously, equation (12) can yield other solutions.

QUASI-BIDIMENSIONAL SPLINES

The quasi-bidimensional method deals with obtaining a cubic, bidimensional surface, starting from one-dimensional (1-D) splines. Assume that we are dealing with a series of straight lines, parallel to the x-axis but irregularly spaced in the y-direction. Along the x-axis, 1-D splines can be fit to the

data to interpolate and regularize in that direction. We then have equally spaced data (at intervals Δx) on those lines. A second interpolation in the y-direction, along fixed values of x and with a Δy not necessarily equal to Δx , will yield a regularly spaced grid.

These operations are mathematically equivalent to performing a composition of orthogonal splines (tensor products)

$$u(x, y) = \sum_{m=0}^{I+2} \sum_{n=0}^{J+2} \beta_{mn} \, \phi_m(x) \psi_n(y), \tag{23}$$

where u(x, y) represents the bidimensional surface, β_{mn} is a set of coefficients, and ϕ_m and ψ_n are piece-wise smooth, cubic functions of class C^2 (De Boor, 1962).

From the previous section, given n points (u_1, \ldots, u_n) and the derivatives (Po, Pn) at both ends of the interval, there is one and only one unidimensional spline that passes through these points. Thus, given a point in \mathbb{R}^{n+2} , there is one and only one associated unidimensional spline. Since \mathbb{R}^{n+2} is a linear space and since there is an isomorphism between R**: and the set of unidimensional splines $S(x; x_0, ..., x_l)$, this set is also linear. Equation (23) involves the product of two linear spaces; the space of splines in the x-direction ϕ_m and the space of splines in the y-direction, ψ_n . These spaces have dimensions (I + 3) and (J + 3), respectively. The product space has dimension (I + 3) (J + 3) and constitutes the linear space of bidimensional surfaces. However, if the linear spaces ϕ_m and ψ_* are not orthogonal, as in the case of nonparallel flight lines. the tensor product does not yield a linear space. This is the main source of error in the quasi-bidimensional approach.

De Boor (1962) showed that the cubic splines given by equation (23) are uniquely determined if the following values are known:

$$U_{ij} = u(x_i, y_j) \quad i = 0, \dots, 1; \quad j = 0, \dots, J$$

$$P_{ij} = u_x(x_i, y_j) \quad i = 0, 1; \qquad j = 0, \dots, J$$

$$q_{ij} = u_y(x_i, y_j) \quad i = 0, \dots, 1; \quad j = 0, J$$

$$S_{ij} = u_{xx}(x_i, y_j) \quad i = 0, 1; \qquad j = 0, J.$$
(24)

Assuming that the values of the polynomial u(x, y) were known, as well as its derivatives in x, y, and xy. De Boo: (1962) obtained a matrix equation for determination of the β , coefficients of the polynomial surface

$$\mathbf{A} \mathbf{K} \mathbf{\Delta}' = \mathbf{\beta}. \tag{25}$$

The matrix K contains values of the polynomial and its derivatives, while [A] is formed by elements that depend upon the coordinates of the regular, but not equally spaced, grid.

Similar to the unidimensional case, the intermediate derivatives with respect to x, y, and xy are obtained by the recurrence formula derived from the continuity of the second derivative:

$$\Delta Y_{j-1}Q_{i,j+1} + 2(\Delta Y_{j-1} + \Delta Y_j)Q_{ij} + \Delta Y_jQ_{i,j-1}$$

$$= 3\left[\frac{\Delta Y_{j-1}}{\Delta Y_j}(U_{i,j+1} - U_{ij}) + \frac{\Delta Y_j}{\Delta Y_{j-1}}(U_{ij} - U_{i,j-1})\right], \quad j = 1, ..., J - 1.$$

$$\begin{split} \Delta Y_{j-1} S_{i,j+1} + 2(\Delta Y_{j-1} + \Delta Y_j) S_{ij} + \Delta Y_j S_{i,j-1} \\ &= 3 \left[\frac{\Delta Y_{j-1}}{\Delta Y_j} \left(P_{i,j+1} - P_{ij} \right) \right. \\ &+ \frac{\Delta Y_j}{\Delta Y_{j-1}} \left(P_{ij} - P_{i,j-1} \right) \right], \quad j = 1, \dots, J-1, \\ \Delta X_{i-1} P_{i+1,j} + 2(\Delta X_{i-1} + \Delta X_i) P_{ij} + \Delta X_i P_{i-1,j} \\ &= 3 \left[\frac{\Delta X_{i-1}}{\Delta X_i} \left(U_{i+1,j} - U_{ij} \right) \right. \\ &+ \frac{\Delta X_i}{\Delta X_{i-1}} \left(U_{ij} - U_{i-1,j} \right) \right] \quad i = 1, \dots, I-1, \end{split}$$

and

$$\Delta X_{i-1} S_{i+1,j} + 2(\Delta X_{i-1} + \Delta X_i) S_{ij} + \Delta X_i S_{i-1,j}$$

$$= 3 \left[\frac{\Delta X_{i-1}}{\Delta X_i} (Q_{i+1,j} - Q_{ij}) + \frac{\Delta X_i}{\Delta X_{i-1}} (Q_{ij} - Q_{i-1,j}) \right], \quad i = 1, \dots, l-1. \quad (26)$$

This approach is used to obtain the splines if the field values are regularly distributed, since the only requirement for the validity of the algorithm is that the 1-D splines lie along straight lines. However, it is well-known that in geophysical exploration such a requisite is seldom fulfilled, although good approximations are sometimes obtained in aeromagnetic flight lines. Generally the lack of parallelism and the lack of straightness as sources of error must be considered.

Two approaches were followed to minimize the above difficulties: (1) correcting the data on the basis of least-squares and linear projections (Bhattacharyya, 1969; Rasmussen and Sharma, 1979), and (2) correcting with parametric functions (Heissing et al., 1972; Rasmussen and Sharma, 1979). The first approach uses straight lines, while the second uses polygons approaching straight lines. In the second case interpolation is performed with the original field values, although slope dispersion (i.e., the range of bearing variations along a flight line) is high and inconvenient. In the first approach fitting a straight line and projecting the original values onto it is the source of error. We briefly discuss both methods.

Linear projections

This approach considers data points distributed in the vicinity of straight, parallel lines. The algorithm, proposed in Bhattacharyya (1969), deals with aeromagnetic data using De Boor's tensor product formulation. The coefficients of the straight lines are obtained by least-square fits of the data sets, and then the data points that do not lie on the straight line are projected linearly onto it by the following procedure.

- (1) Search for the datum point closest to the fitted line; such a point is called a pivot point and is imposed so its projection onto the line has the same field value F_{pl} (i.e., we assume that it lies on the line).
- (2) Take the closest point to the pivot; then the field projected F_p onto the point on the straight line is given by (Figure 1):

$$F_p = (d_2/d_1)F_0 + [(1-d_2)/d_1]F_{pl}$$
 (27)

where d_1 and d_2 are distances projected from the field point to the pivot and from the projected point to the pivot, respectively. F_0 is the field corresponding to the point to be projected.

(3) The projected point is now considered a pivot and the process repeated for the next closest point.

Once the projections are performed, the tensor product of the splines expressed by equation (23) is readily obtained: to each straight line fit a unidimensional spline and obtain equally spaced points along the y-axis. Next, adjust straight lines parallel to the x-axis with splines and obtain equally spaced points in this direction.

As pointed out before, this algorithm introduces sources of error before De Boor's treatment can be applied: the point values on the straight lines are not actual field values but are projections.

Parametric splines

An irregular distribution of data points is the basis for producing a set of parametric bicubic splines (Ferguson, 1964; Heissing et al., 1972). The interpolating surface is formed by irregular, bicubic surfaces (Figure 2a). Each bicubic surface must preserve continuity of the function and of the first derivative with respect to contiguous surfaces. Figure 2b shows a bicubic surface $A_{i,j}$ in which two parametric coordinates u, v are defined along the directions shown; curves k_1 and k_2 are parameterized with respect to the variable u and curves k_3 and k_4 are parameterized with respect to v. Two points are located: P(u) on k_1 and Q(u) on k_2 . An interpolation is made from P(u) to Q(u) with a curve segment parameterized in the coordinate v, defining the bicubic polynomial

$$P(u, v) = v^{3} \{-2[Q(u) - P(u)] + x(u) + y(u)\}$$

$$+ v^{2} \{3[Q(u) - P(u)] - 2x(u) + y(u)\}$$

$$+ vx(u) + P(u).$$
(28)

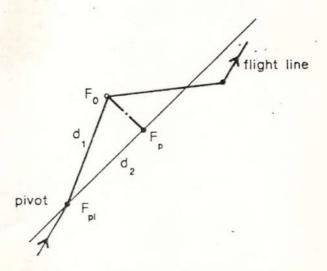


FIG. 1. The method of linear projections uses field values F_p that have been projected onto a straight line from the actual flight line.

where x(u) and y(u) are the tangents to the curves in the parametric direction v at points P(u) and Q(u). Both tangents are given by cubic interpolations in the u direction. Notice the similarity between equation (28) and equation (2) with a=0and h = 1 [i.e., equation (28) is normalized in the interval (0, 1)].

The bicubic polynomial (28) is expressed as

$$P(u, v) = \sum_{p=0}^{3} \sum_{q=0}^{3} u^{p} v^{q} R_{pq}$$
 (29)

which corresponds to De Boor's tensorial product [equation (23)].

The 16 constants R_{pq} are determined through continuity of the first derivatives along the perimeter of the surfaces Ai, (Ferguson, 1964):

$$R_{00} = P_{ij},$$

$$R_{01} = S_{ij},$$

$$R_{02} = 3(P_{i,j+1} - P_{ij}) - (2S_{ij} + S_{i,j+1}),$$

$$R_{03} = 2(P_{ij} - P_{i,j+1}) + (S_{ij} + S_{i,j+1}),$$

$$R_{10} = T_{ij},$$

$$R_{11} = 0,$$

$$R_{12} = 3(T_{i,j+1} - T_{ij}),$$

$$R_{13} = 2(T_{ij} - T_{i,j+1}),$$

$$R_{20} = 3(P_{i+1,j} - P_{ij}) - (2T_{ij} + T_{i+1,j}),$$

$$R_{21} = 3(S_{i+1,j} - S_{ij}),$$

$$R_{22} = 3[3(P_{i+1,j+1} - P_{i,j+1} + P_{ij} - P_{i+1,j}) + 2(T_{ij} - T_{i,j+1}) + (T_{i+1,j} - T_{i+1,j+1}) + 2(S_{ij} - S_{i+1,j}) + (S_{i,j+1} - S_{i+1,j+1})],$$

$$R_{23} = 2[3(P_{i+1,j} - P_{ij} + P_{i,j+1} - P_{i+1,j+1}) + 2(T_{i,j+1} - T_{ij}) + (T_{i+1,j+1} - T_{i+1,j})] + 3(S_{i+1,j} + S_{i+1,j+1} - S_{ij} - S_{i,j+1}),$$

$$R_{30} = 2(P_{ij} - P_{i+1,j}) + T_{ij} + T_{i+1,j},$$

$$R_{31} = 2(S_{ij} - S_{i+1,j}),$$

$$R_{32} = 3[2(P_{i,j+1} - P_{i+1,j+1} + P_{i+1,j} - P_{ij}) + (T_{i,j+1} + T_{i+1,j})] + 2(S_{i+1,j+1} - S_{ij}) + 2(S_{i+1,j+1} - S_{i,j+1}),$$

$$R_{33} = 2[2(P_{ii} - P_{i+1,j}) + 2(S_{i+1,j+1} - S_{i,j+1}),$$

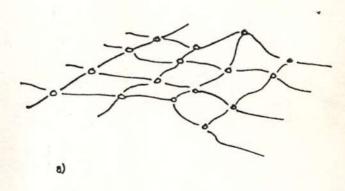
$$R_{34} = 2[2(P_{ii} - P_{i+1,j} + P_{i+1,j+1} - P_{i,j+1})]$$

and

$$+ (S_{ij} - S_{i+1,j} + S_{i,j+1} - S_{i+1,j+1}),$$

where T_{ij} are derivatives with respect to the parametric direction μ and S_{ij} are derivatives with respect to the parametric

 $+(T_{i,i}+T_{i+1,j})-(T_{i,j+1}+T_{i+1,j+1})$


tion u and Sij are derivatives with respect to the parametric direction r.

Parametric splines eliminate the error introduced by the linear projections discussed previously; however, parameterization entails a much larger slope dispersion (i.e., the lines are not straight lines). Therefore, while one source of error is eliminated, another one is introduced. The parametric algo-

rithm of Rasmussen and Sharma (1979) is a particular case of the one presented above and is not discussed here. Thus, the two approaches reviewed aim to adapt nonuniformly distributed data to a form suitable for the application of the tensorproduct method proposed in De Boor (1962). In performing the adaptations, errors are introduced; the larger the departure of the data set from straight lines, the greater the error introduced in the interpolations.

STRICTLY BIDIMENSIONAL SPLINES

Two methods in the geophysical literature deal with strictly bidimensional splines—one method uses numerical surfaces. and the other uses mathematical surfaces. Numerical surfaces yield only approximate solutions; Briggs (1974) used a finitedifference method to find a solution. We show that the analytical solution offered by the mathematical surfaces yields better interpolations than those obtained with the numerical surfaces. In addition, the analytical method has as many solutions as there are kernels in the Euler-Lagrange equation in two dimensions. The pseudocubic splines are one such solution; however, a more precise approach is the thin-plate solution. We discuss the thin-plate solution in detail, since only a short note has appeared about its use in the treatment of geophysical data (Campos et al., 1983). These methods can interpolate adequately between sets of truly random data.

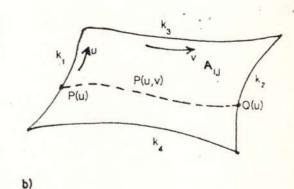


Fig. 2. (a) In the parametric method the interpolating surface is formed by irregular, bicubic surfaces. (b) The bicubic surface $A_{i,j}$ shows the parametric coordinates u, v. Curves k_1 and k_2 are parameterized with respect to u and curves k, and k, are parameterized with respect to r.

The thin-plate approach

The flexure energy of a curved plate is given by (e.g., Landau and Lifshitz, 1970, 46)

$$E = K \iint \left\{ \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)^2 + 2(1 - \sigma) \left[\left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 - \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} \right] \right\} dx dy, \quad (31)$$

where K is a constant that depends upon Young's modulus and Poisson's coefficient σ represents the transverse contraction of the plate under longitudinal tensile strain. Here σ varies between zero (metals) and 1/2 (rubber). The smoothness of the deformation depends upon the rigidity of the plate; since we are interested in the smoothest interpolation, we consider $\sigma = 0$ and K = 1. Thus equation (31) becomes

$$E = \iiint \left[\left(\frac{\partial^2 f}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 f}{\partial y^2} \right)^2 \right] dx \ dy. \quad (32)$$

As for the 1-D problem of the deformed bar presented above, we require a function g(x, y) that minimizes the functional equation (32) while taking the values $g(x_i, y_i)$ at coordinates (x_i, y_i) . That is, the thin plate acquires the observed field values at their corresponding positions.

We can obtain the Euler-Lagrangian equation by a variational approach, just as we did for the 1-D case, although this procedure is more involved. However, another possible derivation is considerably more concise. The functional analysis aspects of such a derivation were emphasized in Duchon (1975); we emphasize here the minimum-norm concept and the boundary conditions problem, which enhances its applications aspects. Instead of finding a minimal trajectory, we minimize a norm in a given functional space [i.e., minimizing equation (32) is equivalent to minimizing a distance in such a space]. The resulting set of functions g(x, y) fulfills the requirement; however, of those functions we use only the ones that take the (field) values $g(x_i, y_i)$, i = 1, ..., n, where n is the number of known (field) values. First, we deal with this problem of boundary conditions and subsequently we consider the problem of minimum curvature.

Boundary conditions for the plate. The interpolating surface can generally be represented by a function g(x, y) belonging to a functional space X. The requirement that the plate pass through the set of observed points implies that g(x, y) takes the values $g(x_i, y_i)$ for (x_i, y_i) , i = 1, ..., n; thus the set $[g(x_1, y_1), ..., g(x_n, y_n)]$ belongs to \mathbb{R}^n . A transformation can be defined from the functional space X to \mathbb{R}^n (Duchon, 1975):

$$A: X \to \mathbb{R}^n$$

with the property

$$A(g) = [g(x_1, y_1), \dots, g(x_n, y_n)].$$

i.e., A links the function g(x, y) in X to the point $[g(x_1, y_1), ..., g(x_n, y_n)]$ in \mathbb{R}^n . Figure 3 shows pertinent relationships between the two spaces X and \mathbb{R}^n and the transformations A and A^{-1} . Assuming known field values, we have a vector \mathbf{z}_0 of \mathbb{R}^n . The set of functions that relates g(x, y) to \mathbf{z}_0 by means of A is needed. $A^{-1}(\mathbf{z}_0)$ is the subset of functions that take the known field values; the function needed minimizes the curvature.

Curvature minimization.—As pointed out previously, the curvature must represent a norm in a functional space Y; the problem is solved by minimizing such a norm in Y.

The inner product of two vectors y and y' in Y is defined by

$$(y, y')_{Y} = \sum_{i,j=1}^{2} \int_{\mathbb{R}^{2}} y_{ij}(x, y) y'_{ij}(x, y) dx dy,$$
 (33)

where the space Y is formed by four-dimensional vectors $y = (y_{11}, y_{12}, y_{21}, y_{22})$. These quadruplets are necessary since the curvature in A has four differential operators:

$$\frac{\partial^2}{\partial x^2}$$
, $\frac{\partial^2}{\partial x \partial y}$, $\frac{\partial^2}{\partial y \partial x}$, and $\frac{\partial^2}{\partial y^2}$.

When y = y', the internal product is reduced to the norm in Y.

$$\|\mathbf{y}\|_{\mathbf{Y}}^2 = \sum_{i,j=1}^2 \int_{\mathbb{R}^2} \|y_{ij}(x,y)\|^2 dx dy,$$
 (34)

and if

$$y_{11} = \frac{\partial^2 g}{\partial x^2}, \qquad y_{12} = \frac{\partial^2 g}{\partial x \ \partial y}, \qquad y_{21} = \frac{\partial^2 g}{\partial y \ \partial x}, \qquad y_{22} = \frac{\partial^2 g}{\partial y^2},$$

then the norm is precisely the curvature.

An additional transformation T will be needed since the interpolating functions g(x, y) are in space X, whereas the quadruplets $(y_{11}, y_{12}, y_{21}, y_{22})$ are in the Y space, where the norm (curvature) is minimized (Figure 3). Let

$$T: X \to Y$$

with

$$T(g) = \left(\frac{\partial^2 g}{\partial x^2}, \frac{\partial^2 g}{\partial x \partial y}, \frac{\partial^2 g}{\partial y \partial x}, \frac{\partial^2 g}{\partial y^2}\right).$$

Duchon (1975) showed that the set of functions denoted X has the structure of a Hilbert space if the inner product is given by

$$|g|_{\delta}^{2} = |g(x_{1}, y_{1})|^{2} + |g(x_{2}, y_{2})|^{2} + |g(x_{3}, y_{3})|^{2} + \sum_{i,j} \int |D_{ij}g(x, y)|^{2} dx dy,$$
(35)

where (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) are three arbitrary, non-aligned points, and

$$D_{11} = \frac{\partial^2}{\partial x^2}$$
, $D_{12} = \frac{\partial^2}{\partial x \partial y}$, $D_{21} = \frac{\partial^2}{\partial y \partial x}$, and $D_{22} = \frac{\partial^2}{\partial y^2}$.

Let z_0 be the vector in space Z containing all the point values to which the plate must be deformed, and let $A^{-1}(z_0)$ be the set of functions (linear variety) in X that fulfill the above restriction in Z. From this set let σ be the wanted solution. Thus, in the set $T[A^{-1}(z_0)]$ the element of the set $T(\sigma)$ is closest to the zero of the Y-space (i.e., the element yielding the minimum norm). This statement can be expressed as an internal product by letting T(x) be an element of $T[A^{-1}(0)]$:

$$\langle T(\sigma), T(x) \rangle_Y = 0,$$

where $\langle \ \rangle$ means interior product. We now find the equivalent property in X by changing the domain and the norm; thus

$$\langle T(\sigma), T(x) \rangle_{Y} = 0 \langle T^{T}T, \sigma x \rangle_{X} = 0.$$

We show that $T^TT\sigma$ may be expressed as a linear combination of the rows of A (i.e., when A is considered a matrix):

$$T^T T \sigma = A^T \lambda$$
.

Thus

$$\langle T(\sigma), T(x) \rangle_Y = \langle A^T \lambda, x \rangle_X = \langle \lambda, Ax \rangle_Z,$$
 (36)

where T(x) is now not necessarily in $T[A^{-1}(0)]$. Therefore, the minimization of the norm in Y has been related to a condition in space Z.

Let $A(y) = g(a_i)$ such that $g \in X$ and a_i are the plate deformations at (x_i, y_i) . The term $g(a_i)$ is, of course, a point of \mathbb{R}^n ; from equation (35)

$$\int D_{ik} \sigma(x, y) D_i D_k g(x, y) dx dy = \sum_{i=1}^n \lambda_i g(a_i).$$
 (37)

From the definition of Dirac's delta function and letting $\delta(t - a_i) = \delta a_i$ and t = (x, y) be a point of \mathbb{R}^2 , then the right-hand side can be written as

$$\sum_{i=1}^{n} \lambda_{i} g(a_{i}) = \langle \sum_{i} \lambda_{i} \delta_{u_{i}}, g \rangle,$$

from which (Gel'fand and Shilov, 1964)

$$\sum_{j,k} \langle D_j D_k \sigma, D_j D_k g \rangle = \sum_{j,k} \langle D_j^2 D_k^2 \sigma, g \rangle = \langle \Delta^2 \sigma, g \rangle$$

$$= \langle \sum_i \lambda_i \delta_{a_i}, g \rangle, \tag{38}$$

and finally

$$\Delta^2 \sigma = \sum_{i=1}^n \lambda_i \delta_{a_i}. \tag{39}$$

Equation (39) is the Euler-Lagrange equation of the functional (32).

Boundary conditions.—To determine the boundary conditions, we consider equation (37). The kernel of the bigradient is the set of all polynomials of first degree in \mathbb{R}^2 . If g is an element of such a kernel, then

$$\sum_{i=1}^{n} \lambda_i \gamma(a_i) = 0, \tag{40}$$

where γ is a bidimensional polynomial of the first degree. Since the plate deformations a_i have coordinates (x_i, y_i) , then equation (40) can be expressed as

$$\sum \lambda_i = 0; \qquad \sum \lambda_i x_i = 0; \qquad \sum \lambda_i y_i = 0. \tag{41}$$

Equations (39) and (41) determine the deformation function or

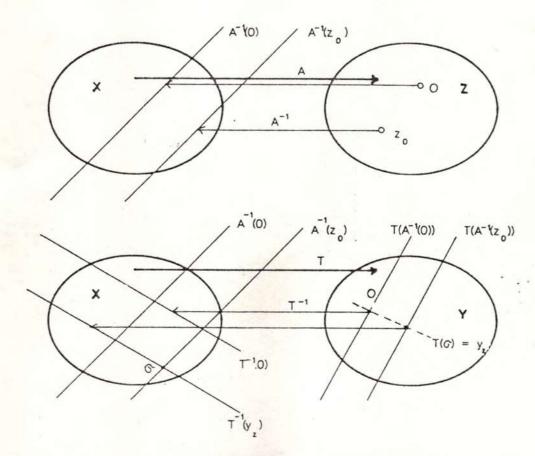


Fig. 3. Transformation A between spaces X and Z is defined in order to impose boundary conditions on the deformed interpolating surface. Transformation T is defined between spaces X and Y in order to minimize the norm in Y-space (i.e., the curvature). z_0 is the set of observational (i.e., field) values. $A^{-1}(0)$ is the kernel of the A transformation and $A^{-1}(z_0)$ is the linear variety representing all the functions arising from z_0 , y, is the element of the Y-space that belongs to the linear variety $T(A^{-1}(z_0))$ and is closest to the zero of such a space. $T^{-1}(0)$ is the kernel of the T-transformation and $T^{-1}(y_2)$ is the linear variety that arises from y_2 , σ is the required solution.

spline. Equation (39) is known as the biharmonic equation; to find its solution, we consider the function (Aronszajn, 1950)

$$H(t) = \frac{1}{2\pi} |t|^2 \log |t|^2$$
 (42)

with t = (x, y). Then

$$\Delta^2 H = \delta$$

which means that H(t) is a solution of the biharmonic equation. We now consider the function

$$u = \sum \lambda_i \, \delta_{u_i} * H, \tag{43}$$

where * means convolution; then

$$\Delta^2 u = \sum \lambda_i \delta_{u_i} * \Delta^2 H = \sum \lambda_i \delta_{u_i} * \delta = \sum \lambda_i \delta_{u_i}.$$

We have shown that the function u is a solution of the biharmonic equation. The general solution is the sum of u plus a polynomial of first degree, which is the kernel of the biharmonic operator.

Writing these results in matrix form, the interpolating function $\sigma(t)$ that minimizes the functional (32) is given by (Duchon, 1975)

$$\sigma(t) = \sum_{i=1}^{n} \lambda_{i} K(t - t^{i}) + \alpha_{1} x + \alpha_{2} y + \alpha_{3},$$
 (44)

with

$$t = (x, y);$$
 $K(t) = |t|^2 \log |t|^2;$ $|t|^2 = t_x^2 + t_y^2.$

The coefficients $\lambda_1, \ldots, \lambda_n, \alpha_1, \alpha_2, \alpha_3$ satisfy the equations,

$$K\Lambda + E\alpha = z$$
,

and

with

$$\mathbf{E} = \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & y_n \end{vmatrix};$$

$$\underline{K} = (k_{ij}); \quad k_{ij} = k(t^i - t^j), \quad i \neq j; \quad k_{ii} = 0;$$

and

$$\Lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \qquad \alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}.$$

Method of projections.—The matrix system of equations (45) is simplified by the method of projections (Paihua and Utrera, 1976). Consider the vectorial subspace of Rⁿ defined as

$$E = \{(v_1, v_2, \dots, v_n)^T \varepsilon \mathbb{R}^n | v_i = a + bx_i + cy_i \ i = 1, \dots, n\}$$

Each vector in the subspace has components formed by firstdegree polynomials generated by the column vectors of matrix E. Since the vectors

$$\mathbf{u}_{1} = (1, 1, ..., 1)^{T},$$
 $\mathbf{u}_{2} = (x_{1}, x_{2}, ..., x_{n})^{T},$
(46)

and

$$\mathbf{u}_3 = (y_1, y_2, \dots, y_n)^T$$

are linearly independent and generate the space E, they are then a basis of such a space. We generate an orthogonal basis by the Gram-Schmidt procedure (e.g., Nering, 1963). Let

$$Y = (\hat{v}_1, \hat{v}_2, \hat{v}_3)$$

be the components of the basis with

$$\hat{\mathbf{v}}_1 = \mathbf{v}_1 / \sqrt{n}, \qquad \hat{\mathbf{v}}_2 = \mathbf{v}_2 / |\mathbf{v}_2|, \qquad \hat{\mathbf{v}}_3 = \mathbf{v}_3 / |\mathbf{v}_3|.$$

and with

$$v_1 = u_1,$$

 $v_2 = u_2 - \langle u_2, v_1 \rangle v_1.$ (47)

and

$$\mathbf{v}_3 = \mathbf{u}_3 - \langle \mathbf{u}_3, \mathbf{v}_1 \rangle \mathbf{v}_1 - \langle \mathbf{u}_3, \mathbf{v}_2 \rangle \mathbf{v}_2$$

E appears in the two equations numbered (45). Furthermore.

$$\mathbf{E}^{T}\mathbf{\Lambda} = \mathbf{0} \tag{48}$$

implies that A is in the subspace orthogonal to E (i.e., $\mathbb{F} \equiv \mathbb{E}^{\perp}$); thus projections can be used to simplify equations (45).

Since the column vectors of Y are orthogonal, then the orthogonal projection of R" onto E is given by

$$Q = YY^T$$
.

while the projection of R" onto the orthogonal subspace F is given by

$$P = 1 - Q$$
.

Equations (45) can be projected by applying P

$$PKA + PE\alpha = Pz (49)$$

since, according to equation (48), A is in F. Then the projection of A onto F must be A, or

$$P\Lambda = \Lambda$$
.

Thus.

$$PKPA + PE\alpha = Pz$$

However, the projection of the vectors of E onto F must also be zero, i.c.,

$$PE = 0.$$

Thus

$$\mathbf{P}\mathbf{K}\,\mathbf{P}\mathbf{A}=\mathbf{P}\mathbf{z}.$$

The system of equations (45) has been reduced to

$$AA = b$$
.

and

where A = PKP and b = Pz.

The problem now consists of finding a A* that is a solution of equation (50), and then projecting it onto F. From the computational point of view there is a result that further simplifies the solution. The matrix & is positive definite (Paihua and Utrera, 1976), and therefore we can use Cholesky's algorithm to solve the system (50). The solution of the coefficients A of the interpolating function o is now accomplished for the thin-plate approach. Next we need to solve for the coefficients

Starting from

$$E\alpha = z - K\Lambda$$

and using the equivalent matrix of E with column vectors orthonormalized by the Gram-Schmidt method, the above equation can be written

$$V\hat{\alpha} = z - K\Lambda$$
.

Thus.

$$\dot{\alpha} = -\mathbf{Y}^T [\mathbf{K}\mathbf{\Lambda} - \mathbf{z}].$$

and using the orthonormal basis $[\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2, \hat{\mathbf{v}}_3]$, we have

$$\alpha_1 = n\mathbf{a}_2/\langle \hat{\mathbf{v}}_2, \hat{\mathbf{v}}_2 \rangle - \langle \hat{\mathbf{v}}_2, \hat{\mathbf{v}}_3 \rangle \cdot \mathbf{a}_3,$$

$$\alpha_2 = n\mathbf{a}_3/\langle \hat{\mathbf{v}}_3, \hat{\mathbf{v}}_3 \rangle,$$
(51)

and

$$\alpha_3 = \mathbf{a}_1 - \frac{1}{n} \langle \mathbf{u}_2, \mathbf{u}_2 \rangle \cdot \mathbf{a}_2 - \langle \hat{\mathbf{v}}_2, \hat{\mathbf{v}}_3 \rangle \cdot \mathbf{a}_3.$$

Thus equations (50) and (51) constitute the complete solution of the coefficients of the functionals in equation (32). We now summarize the computational steps necessary to find the interpolating function σ .

- (1) Calculate the matrix K.
- (2) Obtain $\hat{\mathbf{v}}_1$, $\hat{\mathbf{v}}_2$, $\hat{\mathbf{v}}_3$, and \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 by the Gram-Schmidt method.
- (3) Calculate the matrix $\underline{A} = \underline{P} \underline{K} \underline{P}$ by Cholesky factorization.
 - (4) Project z onto ₱ to obtain b = Pz.
 - (5) Find Λ by solving the system $\Lambda \Lambda = b$.
 - (6) Project A onto \mathbb{F} : $A^* = PA$.
 - (7) Compute α1, α2. α3 by means of equation (51).

Since the total number of points can be subdivided (Paihua and Utrera, 1976) to obtain the solution of the system in step (5), the total number of points can be made arbitrarily large.

Finally, we stress that the kernel (42) of the biharmonic equation (39) is just one of the possible solutions for such an equation. Another possibility is, for instance, the pseudocubic splines where

$$K(t) = |t|^{2/3}.$$

However, Campos et al. (1983) stated that pseudocubic splines yield poorer results than the thin-plate approach, especially in places which lack measurements in a given region.

The finite-difference approach

This method belongs to the numerical surfaces classification and also deals with curvature minimization under the thinplate approach; however, curvature here is approximated (Briggs, 1974) by

$$C = \sum_{i=1}^{I} \sum_{j=1}^{J} (C_{ij})^{2}, \tag{52}$$

where C_{ij} is the curvature in (x_i, y_i) . Let $u_{ij} = u(x_i, y_i)$ be the displacement of the plate in (x_i, y_i) . C_{ij} is then a function of u_{ij} and nearby grid values; the total curvature depends upon the precision with which the curvature is represented in u_{ij} . In

order to minimize equation (52), the partial derivatives of Q with respect to u_{ij} must equal zero (Stiefel, 1963).

$$\frac{\partial C}{\partial u_{ij}} = 0 \qquad i = 1, \dots, I j = 1, \dots, J.$$
 (53)

This results in a set of relations between the neighboring grid points, with one relation per point.

Two general curvature descriptions are needed: (1) for points on the regular grid, with spacing h which also have expressions for the corners, edges, and intermediate points. In the latter case, for instance, we have

$$C_{ij} = (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{ij})/h^2.$$
 (54)

(2) For points not on the grid,

$$C_{ij} = \sum_{k=1}^{4} h_k u_k - u_{ij} \sum_{k=1}^{4} h_k + h_5 w_n.$$
 (55)

The coefficients b_k , k = 1, ..., 5 are calculated from the Taylor series expansion of the points.

$$u_k \{x_0 + \xi_k, y_0 + \eta_k\}, \quad k = 1, ..., 5$$

and by taking five u_k values of equation (55) as

$$(h, -h), (0, -h), (-h, 0), (-h, h), and (\xi_5, \eta_5).$$

where w, is the nearby observation value.

Equation (55) is the expression for points outside the grid. Substituting equations (54) and (55) into equation (53), we obtain a system of linear equations that allows calculation of interpolated points.

The accuracy of this method depends upon the precision with which the curvature is approximated, particularly for points outside the grid. If the grid spacing is large, or if there are few points in a given region, the Taylor series expansion is less approximate. The method may show convergence problems when the number of points is large or when the grid spacing h is also large. Even without a direct comparison based on modeled results between the finite-difference method and the analytic solution, it is not difficult to see that the results of the former method tend to those of the latter as $h \rightarrow 0$. The field values are not as accurately reproduced by the finite-difference method as they are by the analytic solution, however, the former is less costly and faster.

NUMERICAL EVALUATIONS

A quantitative comparison is possible between the various interpolation techniques following the procedure established in Rasmussen and Sharma (1979). They used geomagnetic models to compute actual field values in specified positions interpolations at such points with parametric and non-parametric methods allow numerical comparisons between them. They computed the corresponding mean error, maximum error, and standard deviation in percentage with respect to the largest field value of the anomaly, concluding that non-parametric methods yield figures approximately 50 percent better than parametric methods. They point out, however, that the latter take 50 percent less computer time.

Following this trend, and reproducing the model prisms used by the above authors, we carried out a numerical evaluation for the strictly bidimensional thin-plate approach. The models consist of three dikes of equal length (16 km) and widths of 4, 8, and 16 km buried at depths of 0.25, 0.50, and

1.0 km. We assumed a magnetic susceptibility of 0.003 cgs and a terrestrial field of 50 000 nT, with inclination 75 degrees and declination of 0 degrees. Using a 3-D magnetic modeling program, we generated 40 × 40 field values on the surface at 1 km spacing; from these we obtained a subset of values spaced on a regular grid at 2 km separation. The latter were used as input for the thin-plate interpolation, with an interpolating interval of 1 km. The matrix of exact data was subtracted from the matrix of interpolated data and the error matrix (Table 1 was obtained). Table 2 shows the error evaluation reported in Rasmussen and Sharma (1979) for the nonparametric method (i.e., for the most exact quasibidimensional algorithm). From these tables note that the maximum difference for the maximum error is 2.7 percent in favor of the quasi-bidimensional method, while the standard deviation and the mean errors are practically equal. This preliminary comparison shows that on regular grids the methods yield similar results.

Tables 3, 4, and 5 were computed with the thin-plate program for random data distributions, which are the data sets

pertinent to this discussion. For 300 random "field" data, we generated the regular grid of 20 × 40 nodes (1 km apart) and obtained Table 3.

Similarly, we obtained Table 4 from 600 random field data points, and Table 5 from 900 random field data points, all generated with the above computer program. Note that accuracy strongly depends upon the number of initial random data points with which the interpolating surface is generated. As an example, for the prism of 4 km width buried at a depth of 0.5 km, the mean error is 0.67 percent for 300 random data points, 0.37 percent for 600 random data points, and 0.24 percent for 900 random data points; the corresponding percentages for the maximum error are 26.7, 20.6, and 11.6. Figures 4a and 4b show, respectively, plots of the percent maximum error and the percent standard deviation versus the field gradient in nanoteslas per kilometer for the dike of 4 km width buried at a depth of 1 km. It is shown that the error increases when the gradient becomes more pronounced (i.e., when the prism is shallower) and decreases when the number of input data points increases. The maximum error in the 900

Table 1. Errors between field values and interpolated data from thin plate approach (800 points on regular grid).

Depth	Width	Mean Error	%	Max. Error	%	S.D.	%	Max. Value	Grad.
1.0	4	1.47	0.25	47.36	8.06	4.60	0.78	587	240
	2	1.74	0.25	48.44	7.01	5.01	0.72	690	265
1.0	16	2.17	0.29	55.06	7.56	5.45	0.74	727	274
0.5	10	3.13	0.40	106.35	13.30	10.30	1.32	778	459
0.5	8	7.78	0.44	108.45	12.72	11.27	1.32	852	479
0.5	16	4.70	0.53	111.99	12.78	12.02	1.37	876	476
0.25	4	4.50	0.50	160.50	18.02	15.08	1.69	890	759
0.25	8	5.52	0.58	165.13	17.48	16.51	1.74	944	778
0.25	16	6.94	0.72	167.25	17.41	17.66	1.83	960	793

Table 2. Errors between field values and interpolated data from Rasmussen and Sharma (1979) (800 points on regular grid).

Depth	Width	Mean Error	%	Max. Error	%	S.D.	%	Max. Value	Grad.
1.0	4	0.68	0.12	25.06	4.39	2.68	0.47	571	237
1.0	8	1.12	0.16	21.24	3.03	3.43	0.49	701	259
1.0	16	2.09	0.28	20.94	2.80	4.78	0.64	748	263
0.5	4	1.39	0.18	74.28	9.55	6.75	0.87	777	458
0.5	8	2.38	0.28	71.65	8.43	9.26	1.09	850	477
0.5	16	4.53	0.51	71.74	8.07	13.06	1.47	889	473
0.25	4	2.40	0.27	141.67	15.3	12.87	1.39	926	748
0.25	8	4.67	0.47	141.29	14.2	18.00	1.81	995	758
0.25	16	8.95	0.87	169.78	16.5	62.15	6.04	1 029	761

Table 3. Errors between field values and interpolated data from thin plate approach (300 random data).

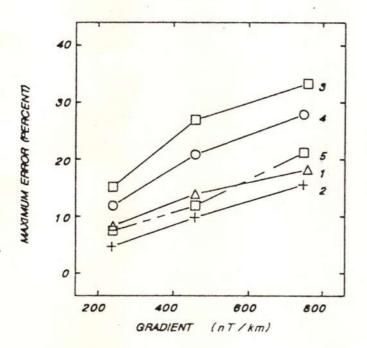

Depth	Width	Mean Error	%	Max. Error	%	S.D.	%	Max. Value	Grad
	4	2.44	0.41	87.28	14.86	5.33	0.90	587	240
1.0	9	3.39	0.49	74.16	10.74	5.80	0.85	690	265
1.0	. 6		0.81	119.30	16.39	9.11	1.25	727	- 274
1.0	16	5.94			26.66	12.19	1.56	778	459
0.5	4	5.25	0.67	207.65			1.69	852	479
0.5	8 =	7.53	0.88	173.92	20.41	14.40			476
0.5	16	12.79	1.46	232.30	26.51	20.70	2.36	876	
0.25	4	8.17	0.91	339.40	33.12	20.05	2.25	890	759
0.25	è	12.09	1.28	269.60	28.45	24.56	2.60	944	778
0.25	16	20.24	2.10	352.92	36.73	33.94	3.53	960	793

Table 4. Errors between field values and interpolated data from thin plate approach (600 random data).

Depth	Width	Mean Error	%	Max. Error	%	S.D.	%	Max. Value	Grad.
1.0	4	1.19	0.20	67.97	11.57	3.28	0.55	587	240
1.0	8	1.51	0.21	42.14	6.10	3.26	0.4	690	265
1.0	16	2.4	0.32	42.0	5.77	3.64	0.50	727	274
0.5	4	2.90	0.37	160.08	20.55	8.52	1.09	778	459
0.5	8	3.80	0.45	110.9	13.02	9.18	1.07	852	479
0.5	16	5.71	0.65	107.4	12.26	10.08	1.15	876	476
0.25	4	5.04	0.56	247.19	27.7	15.92	1.7	890	749
0.25	8	7.01	0.74	220.13	23.31	17.9	1.90	944	778
0.25	16	10.87	1.13	215.9	22.4	20.6	2.15	960	793

Table 5. Errors between field values and interpolated data from thin plate approach (900 random data).

Depth	Width	Mean Error	0/0	Max. Error	%	S.D.	%	Max. Value	Grad.
1.0	4	0.71	0.12	42.25	7.19	2.05	0.35	587	240
1.0	8	0.86	0.12	21.69	3.14	1.85	0.26	690	265
1.0	16	1.32	0.18	20.96	2.88	2.03	0.27	727	274
0.5	4	1.87	0.24	90.50	11.62	5.96	0.76	778	459
0.5	8	2.13	0.25	72.10	8.46	5.36	0.63	852	479
0.5	16	3.82	0.43	72.19	8.24	6.88	0.78	876	476
0.25	4	3.86	0.43	187.06	21.00	12.87	1.44	890	749
0.25	8	2.13	0.25	72.10	8.46	5.36	0.63	852	778
0.25	16	8.41	0.87	17.95	18.6	16.82	1.75	960	793

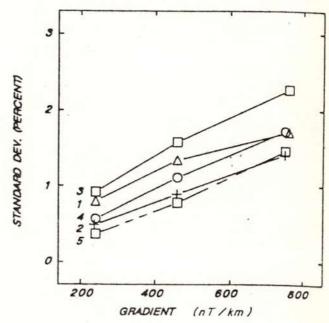


FIG. 4. (a). Percent maximum error versus magnetic field gradient for a dike 16 km long. 4 km wide, 30 km high, and buried at a depth of 1 km. The error increases when the gradient becomes more pronounced and decreases when the number of input data increases.

Fig. 4 (b). Standard deviation versus magnetic field gradient for the same prism as above.

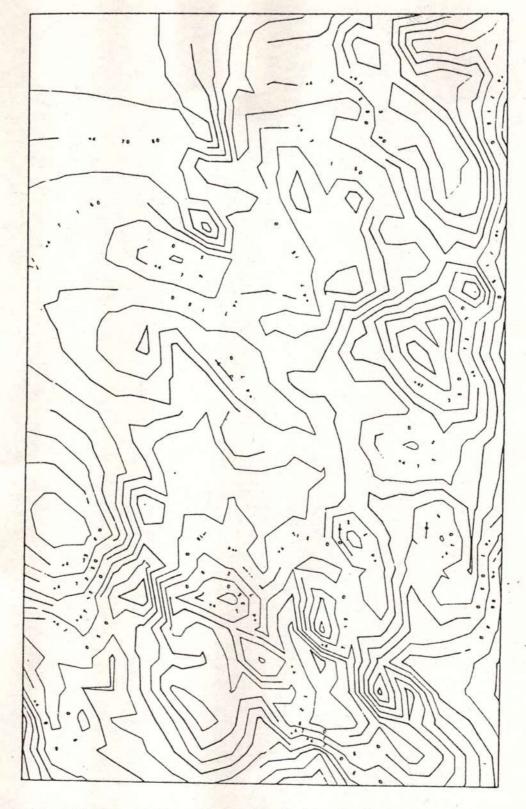


Fig. 6. Interpolation of the data set in Figure 5 on a regular grid of 17 × 26 with the thin plate approach, plus linear interpolations between the regular grid points for final contouring yield a rough-looking map.

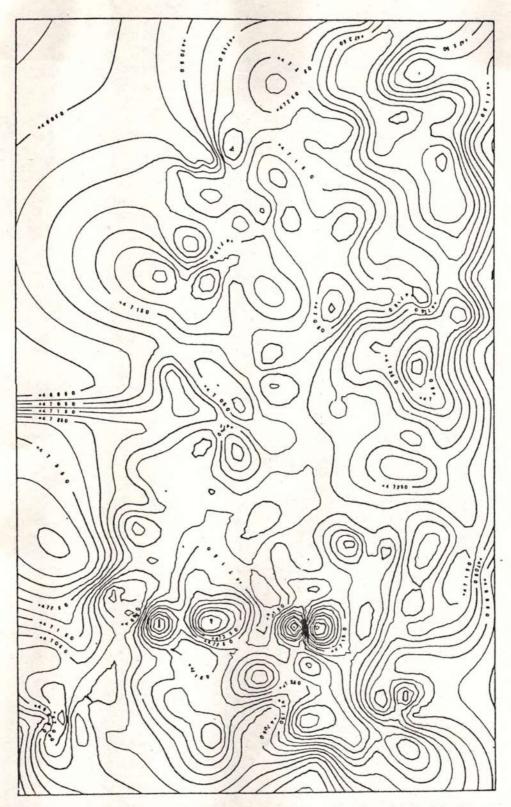


Fig. 7. Interpolation of the data set in Figure 5 on a regular grid of 65×103 points with the thin plate approach, plus linear interpolations between the regular grid points for final contouring yields a smoother aspect to the map. The same set of coefficients as those in Figure 6 were used for the analytical computations.

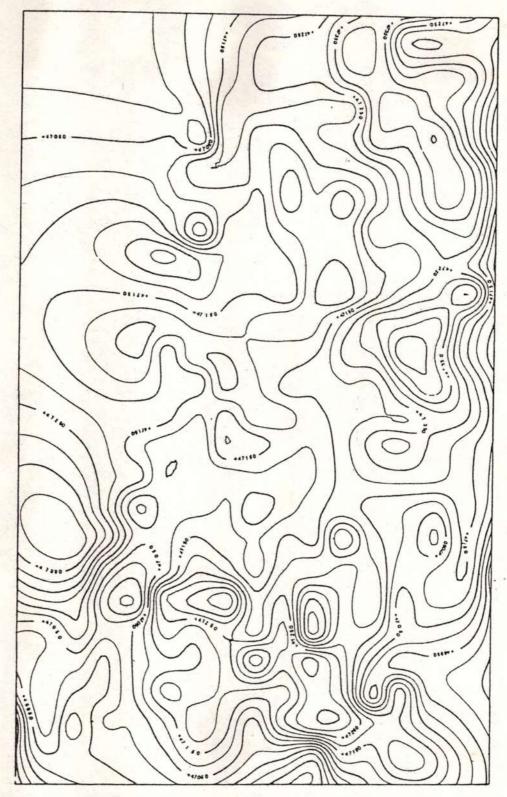


Fig. 8. The regular grid of 17×26 of Figure 6 was densified by means of the tensorial product algorithm to a 113×276 regular grid plus linear interpolations for final contouring. Data trends are similar to those in Figure 7, but this map is smoother. Notice the difference in details between the two maps.

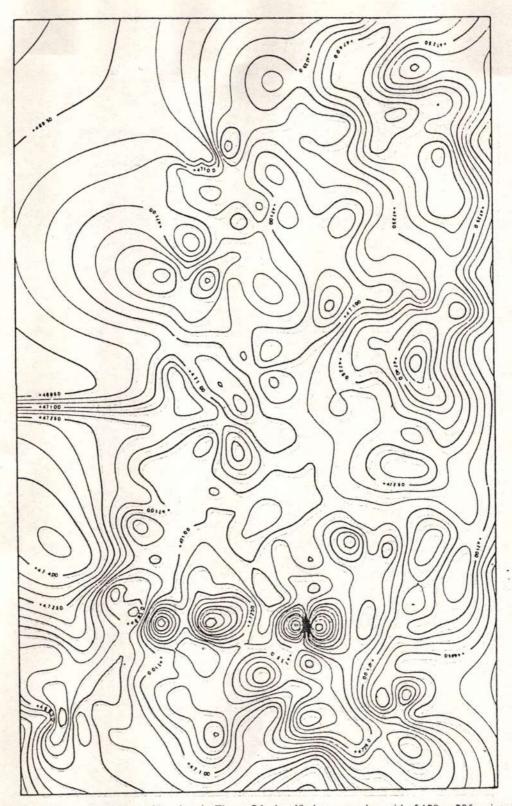


Fig. 9. The regular data grid of 65×103 points in Figure 7 is densified to a regular grid of 129×205 points by means of the tensorial product algorithm. This map is approximately 15 times more expensive than the map in Figure 8; notice, however, the enhancement of small anomalies.

lytical solution are the most accurate methods of interpolating random data. However, they are also the most expensive

A quantitative analysis of interpolation errors suggests that a combination of methods may work satisfactorily and economically. Starting from a set of random data a regular grid is produced with a strictly bidimensional algorithm; the data density of the interpolated data is approximately the same value as that of the random data. The regular grid can next be used as input of a quasi-bidimensional algorithm in order to further densify the data. Actual contouring is performed last by means of a fast, linear algorithm operating on a dense grid. An actual example involving 327 randomly distributed points within an irregular area and bounded by a rectangle is used to illustrate some of the problems involved in automatic contouring of geophysical data sets.

ACKNOWLEDGMENTS

We acknowledge the enthusiastic help of Angeles Figueroa in preparing the typed version of this manuscript. The referees' suggestions greatly improved the original text.

REFERENCES

- Ahlberg, J. H., Nilson, E. N., and Walsh, J. L., 1967, The theory of splines and their applications: Academic Press, Inc.
 Aronszajn, N. A., 1950, Theory of reproducing kernels: Trans. Amer. Math. Soc., 68, 337-404.
 Bhattacharyya, B. K., 1969, Bicubic spline interpolation as a method

- for treatment of potential field data: Geophysics, 34, 402–423.

 Briggs, J. C., 1974, Machine contouring using minimum curvature: Geophysics, 39, 39–48.

 Campos Enriquez, J. O., Thomann, J., and Goupillot, M., 1983, Applications of bidimensional spline functions to geophysics: Geophysics, 48, 1269-1273.

- Crain, I. K., 1970, Computer interpolation and contouring of two-dimensional data: A review: Geoexplor., 8, 71-86.
 Crain, I. K., and Bhattacharyya, B. K., 1967, Treatment of non-equispaced two-dimensional data with a digital computer: Geoexplor., 5, 173-194.
 De Boor, C., 1962, Bicubic spline interpolation: J. Math. and Phys.: 41, 212-218.
- Dooley, J. C., 1976, Two-dimensional interpolation of irregularly spaced data using polynomial splines: Phys. Earth and Plan. Int., 12. 180 - 187
- Duchon, J., 1975, Fonctions spline du type plaque mince en dimension 2: Séminaire d'analyse numérique, n. 231, Université Scientifique et Médicale de Grenoble, France.
- Ferguson, J., 1964, Multivariate curve interpolation: J. Assn. Comp. Mach., 11, 221-228.
 Gel'fand, I. M. and G. E. Shilov, 1964, Generalized functions: Vol. 1.
- Properties and operations: Academic Press, Inc. Heissing, R. C., Lee, H. K., Price, A., and Powers, E. N., 1972, Auto-
- matic contouring using bicubic functions: Geophysics, 37, 669-674. Landau, L. D. and Lifschitz, E. M., 1970, Theory of elasticity: Pergamon Press, Inc.
- Marcus, M., 1960, Basic theorems in matrix theory: Nat. Bur. Stand. Appl. Math. Series 57.
- Nering, E. D., 1963. Linear algebra and matrix theory: John Wiley and Sons, Inc.
- Paihua, L. and Utrera Diaz, F., 1976, Un ensamble de programmes pour l'interpolation des fonctions spline du type plaque mince: Séminaire d'analyse numérique n. 273, Université Scientifique Médicale de Grenoble, France.
 Rasmussen, K. L. and Sharma, P. V., 1979, Bicubic spline interpolation: A quantitative test of accuracy and efficiency: Geophys. Prosp., 27, 394-408.
 Reinsch, C. H., 1967, Smoothing by spline functions: Numer. Math., 10, 177-183.
 Stiefel, E. L., 1963, An introduction to numerical mathematics: Academic Press, Inc.
 Thomson, R. F., 1970, Spline interpolation on a digital computer. Paihua, L. and Utrera Diaz, F., 1976. Un ensamble de programmes

- Thomson, R. F., 1970, Spline interpolation on a digital computer: Preprint X-692-70-261, Goddard Space Flight Center, Greenbelt,
- Maryland. Wahba, G., and Wendelberger, J., 1980, Some new mathematical methods for variational objective analysis using splines and cross-validation: Monthly Weather Rev., 108, 1122-1143.